INTRAOPERATIVE RADIATION THERAPY FOR GASTRIC ADENOCARCINOMA

B. SADEGH-LOOYEH, M.D., F.N. GILLY, M.D., P.Y. CARRY, M.D.,
A.C. SAYAG, M.D., J.B. GRIOT, M.D., P. ROMESTAING, M.D.,
I. SENTENAC, G. BRAILLON, M.D., Ph.D.,
AND J.P. GERARD, M.D., Ph.D.

From the Departments of Digestive Surgery and Radiotherapy, Centre Hospitalier Universitaire Lyon Sud,
69495, Pierre Bénite Cedex, France.

ABSTRACT

Intraoperative radiation therapy (IORT) is a multidisciplinary approach in which residual tumors or tumor beds are directly irradiated during a surgical procedure. To evaluate its efficacy, from 1985, we conducted a prospective study including non-metastatic gastric adenocarcinoma treated by surgery, IORT (15 Grays) and postoperative external beam radiotherapy (44 Grays). Up to 1993, 51 cases of gastric adenocarcinoma (20 pN₀ and 31 pN₁,₂) have been included in the study. Mortality and morbidity rates were not different from those of surgery alone. The overall 5 year survival rate was 59.1%, and the pN₁,N₂ 5 year survival rate was 50.6%. These promising results are comparable with those of Asian randomized studies which demonstrate the possible value of IORT in the treatment of gastric adenocarcinoma.

Keywords: Gastric adenocarcinoma. Radiotherapy. Intraoperative radiation therapy.

INTRODUCTION

The overall 5 year survival rate for gastric adenocarcinoma remains extremely poor (5 to 10%); the main reason for this poor prognosis, according to autopsy findings, appears to be local treatment failures.¹

In order to try to improve local control (and so the survival rate), we decided in 1985 to initiate a prospective non-randomized study using surgery, intraoperative radiation therapy (IORT) and postoperative external beam radiotherapy in the treatment of gastric adenocarcinoma.²

First described in 1907 by C. Beck in Germany,¹ IORT was then forgotten because of technological problems; in 1971, M. Abe in Japan¹ again described IORT using a linear accelerator and reported in 1985 very encouraging results in locally far advanced gastric carcinoma treated by surgery and IORT.¹

IORT consists of direct irradiation of a tumor or of a tumor bed during a surgical procedure; it allows the delivery of a high dose of irradiation with excellent targeting, thereby providing good protection for normal surrounding tissues.

MATERIAL AND METHODS

From January 1986 to November 1993, 251 patients underwent the IORT procedure in our department. Fifty-one were included in our IORT protocol for gastric adenocarcinoma.
Intraoperative Radiation Therapy for Gastric Adenocarcinoma

IORT protocol

We used the Lyon Intraoperative System (LIS) using a linear accelerator (Saturne 42) with 1 cm thick altuglass collimation cones between the tumoral target and the accelerator.

Inclusion criteria were a) gastric adenocarcinoma histologically proven, b) patients without distant metastasis at the time of diagnosis, c) patients without previous oncologic disease, and d) patients with an OMS status of 0 to 2 regardless of age.

The LIS protocol was a) total or subtotal gastrectomy with R1 lymph node dissection, b) IORT with linear accelerator using 12 to 15 Grays through 9 cm diameter collimation cones located on the celiac area, c) postoperative external beam irradiation of 44 Grays, 1 month after surgery, for patients with serosal erosion and/or lymph node involvement, and d) postoperative systemic chemotherapy when the age and status of the patient made it possible.

Patients

Fifty-one patients were included in the IORT study; 39 males and 12 females, mean age 61.7 years (S.D.= 14.7 years, range from 26 to 85 years). Forty-three patients underwent a total gastrectomy (9 with an extended total
gastrectomy) while 8 underwent a subtotal gastrectomy.
Concerning tumor localization, the angulus (n=15), antrum
(n=14), upper part of the lesser curvature (n=5), pre-pyloric
area (n=5), greater curvature (n=5), anterior face of the
stomach (n=3), the whole stomach (diffuse involvement)
(n=3) and the gastric stump (n=1) were affected. Mean
tumor size was 5.3 cm (S.D.= 1.9 cm, range 1-12 cm).
Histologic confirmation of adenocarcinoma was obtained
for all patients: the histologic types were "well differenti­
ted" (n=33), "poorly differentiated" (n=12) and "undiffer ­
entiated" (n=6). According to UICC staging, p TNM were
20 pN\textsubscript{1}, 6 pN\textsubscript{2} and 25 pN\textsubscript{3} (Table I).

All patients underwent a curative resection of their
tumor except for two patients with microscopic involve­
ment of the duodenum discovered on histological examina­
tion.

Statistical analysis
Statistical analyses were performed on STATITCF soft­
ware and survival rates were calculated by using the Kaplan
Meier method.

RESULTS

Mean hospitalisation time of the patients was 11.5 days
(S.D.= 2.4 days, range= 8-18 days).
The mortality rate was 2/51, with 1 myocardial infarction
in a patient (pT\textsubscript{N} \textsubscript{I}) without a previous cardiac history, and
1 case of hepatic failure in a patient (pT\textsubscript{N} \textsubscript{I}) with a past
history of alcoholism.
The morbidity rate was 3/51: 1 gastric fistula (treated by
surgery), 1 evisceration on the 27th postoperative day
(treated by surgery) and 1 case of severe esophagojejunal
anastomosis edema on the 10th postoperative day which
was treated medically.

A late complication was observed in a 54 year old man
treated by total gastrectomy and IORT (15 Grays, 18 MeV)
for a pT\textsubscript{N} \textsubscript{I} gastric adenocarcinoma: four months postopera­tively,
just after an endoscopic control (no evidence of
disease), he died suddenly from massive hematemesis.
No autopsy was performed.
The 5 year survival rate for pN\textsubscript{1} patients (Fig. 2) was 7% (5
year specific survival rate in this group was 100%, as 4
patients died from non-oncologic causes: car accidents,
suicides, thoracic aorta aneurysm).

For pN\textsubscript{2} and pN\textsubscript{3} patients, the 2 year survival rate and the
5 year survival rate was 56.9% and 50.6%, respectively.
In the pN\textsubscript{N} \textsubscript{1} group, 9 patients died: 7 during the first postopera­tive year (1 due to pulmonary metastasis, 1 due to diffuse
hepatic metastases, 1 due to peritoneal carcinomatosis and
1 due to local anastomotic recurrence) and 2 during the
second postoperative year (1 case of hepatic metastasis and
1 due to local recurrence in one of the patients who underwent
a non-curative resection).

DISCUSSION

To date, more than 10,000 patients have been treated all
over the world with IORT. The main technical discussion
remaining today concerns using IORT alone (the method
undertaken by Japanese and German teams) or as a boost in
adjunction with postoperative external complementary irr­
adation (as undertaken by American and French teams).
Concerning the radiobiological efficacy of irradiation, we
think that IORT must be used as a boost on the tumoral bed
after curative surgery in order to prevent local failures.

From a technical point of view, some differences exist
between different teams (such as size and type of collimation
cones, docking systems for collimation cones,...); however,
all teams agree now on the use of electrons rather than
X-rays for IORT– the good homogeneity of electron
doses and the rapid decrement of the electron dose behind
the target make electron beams ideal for IORT.7

All the feasibility studies performed throughout the
world clearly demonstrated that IORT does not increase the
mortality and morbidity rates of gastric surgery.4,12 No
anesthetic accidents have been reported in the literature13
and immunological and biological studies on patients after
IORT never delineated any important consequences.6,14

Main problems could be late complications as reported in
some series: the one we observed in a pT\textsubscript{N} \textsubscript{1} patient with
gastric adenocarcinoma who died four months postopera­tively
from a sudden and massive upper GI hemorrhage led

| pTNM stages of the 51 patients included in the IORT protocol for gastric adenocarcinoma |
|-----------------|---|---|---|---|
| | N\textsubscript{0} | N\textsubscript{1} | N\textsubscript{2} | N\textsubscript{3} |
| T\textsubscript{1} | 5 | 1 | 0 | 6 |
| T\textsubscript{2} | 7 | 2 | 5 | 14 |
| T\textsubscript{3} | 8 | 3 | 19 | 30 |
| T\textsubscript{4} | 0 | 0 | 1 | 1 |
| Total | 20 | 6 | 25 | 51 |

| 5 year survival rate of gastric adenocarcinoma: randomized study of 211 patients (IORT of 28 to 35 Grays without external postoperative complementary irradiation). Adapted from Takahashi and Abe.14 |
|------------------|---|---|
| Stage | Surgery and IORT | Surgery alone |
| | | |
| Stage I | 87.2% | 93.0% |
| Stage II | 83.5% | 61.8% |
| Stage III | 62.3% | 36.8% |
| Stage IV | 14.7% | 0% |
Intraoperative Radiation Therapy for Gastric Adenocarcinoma

us to smoothly decrease our IORT doses. Radiobiological experimentations have shown that a single IORT dose achieved 3 times equivalent dose when compared with fractionated doses; we now use 12 to 13 Grays in IORT for gastric adenocarcinoma, even if a response of late complications to IORT is not strongly demonstrated.

As far as clinical results are concerned, the first randomized study reported in the literature was that of M. Abe. Two hundred eleven patients with gastric adenocarcinoma were randomized into 2 groups; surgery alone or surgery and IORT (30 Grays without external postoperative complementary irradiation); results strongly demonstrated the advantage of IORT, as an improvement of 20-25% was achieved for 5 year survival rates in stage II and III gastric carcinoma (Table II). Unfortunately, this series suffered from methodological mistakes (such as randomization according to the operation date of the patient), therefore the results obtained were not as encouraging as first believed.

Pilot studies undertaken in USA and Europe with IORT in gastric adenocarcinoma revealed promising results in patients with lymph node involvement. In our experience, historical control series were found to be scientifically incomparable with ours; however, we must emphasize that a 50.6% 5 year survival rate in pN,N, gastric adenocarcinoma is a very encouraging result. The study we performed regarding causes of death in our IORT series showed that only 2 pN,N, patients died from a local failure while the others died from distant metastases, on which local IORT is not able to achieve any control.

In Europe, two multi-institutional studies are currently being carried out: one by the French Group of IORT (randomization surgery alone versus surgery, IORT and external postoperative complementary irradiation), and one by the Munich University in Germany (randomization surgery alone versus surgery and IORT).

Finally, the main problem of IORT concerns its infrastructure: in order to perform IORT, it is necessary to have an irradiation room and an operative theatre located nearby one another, and to have experimental multi-disciplinary teams including radiotherapists, surgeons, radiophysicists, anesthesiologists and operative room nurses. The cost of IORT is heavy; a solution could be the Lyon Intraoperative System where an IORT installation is built in the city center and open to all surgical teams of the city. In the near future, another solution could be the Mobotron, which is a mobile linear accelerator which could be used for IORT in a nonspecific operative theatre; this machine is actually undergoing a trial study in San Francisco.

In conclusion, every new medical experience obtained in the field of oncology has shown that intensification of the irradiation doses within tolerance limits has always improved the local control of tumors; IORT probably follows the same rule and has its own place in the multi-disciplinary approaches of local and regional tumor treatment. Preliminary results observed with IORT in gastric adenocarcinoma demonstrate that improvements in local and regional control are possible; therefore we must further evaluate this particular approach for treating digestive tract cancers.

REFERENCES

B. Sadeghi-Looyeh, M.D., et al.

