Polymorphism analysis of malaria susceptibility biomarkers in G6PD deficiency patients

Mohammad Reza Noori-daloii¹, Mohammad Reza Alivand², Parisa Atef-Vahid³, Feyzollah Hashemi-Gorji², Mehrdad Hashemi⁵

Department of Medical Genetics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran.

Received:6 may 2010 Revised:9 June 2010 Accepted:19 June 2010

Abstract

Background: Several studies suggested that some traits and polymorphisms in human genome such as G6PD deficiency and other genes have protective effects on susceptibility to malaria infection.

Methods: In present study we investigated the prevalence of TNFα-244G→A, TNFα-308G→A,TNFα-238G→A, NOS2-954G→C, MBL54G→A, MBL 57G→A, MBL IVS-1-5G→A polymorphisms and G6PD variants (Mediterranean, Chatham, Cosenza, A- (202,376) in 315 subjects with G6PD deficiency and 10 malaria patient. All the 315 subjects were selected from five provinces (Fars, Khuzestan, Esfahan, Yazd and Kerman) and screened by PCR-RFLP method.

Results: The NOS2-954G→A consisted GG(40.31%), GC(53.01%), and CC(6.66%) whereas the TNFα-308 consisted GG(68.8%), AG(31.11%) contents. The TNFα -244 showed GG(94.60%), AG(5.39%) genotypes and the TNFα-238 had GG(92.69%), AG(6.66%), AA(0.63%) genotypes. The MBL54 polymorphism had GG(75.5%), AG(24.4%), AA(0.63%) genotypes. In MBL 57, had GG(95.23%), AG(4.76%), AA (0.63%) genotypes. The G6PD variants was indicated that Mediterranean mutation in Fars, Khuzestan, Esfahan, Yazd and Kerman provinces was 79.4%, 58%, 83/8%, 64% and 63% respectively and also, the Chatham mutation was 8.8%, 8% 4.5%,3.6% and 0% respectively. Analysis of other four mutations (Cosenza, Arures and A-202 and A-367) showed that none of them had those mutations.

Conclusion: Our results suggested that genotypes which causes protection against malaria or reduction of risk for cerebral malaria and death has the maximum prevalence in samples taken from the five provinces, but in the kolmogorov-smiranov test results, only NOS2-954G→C supported the theory of relation between these polymorphisms and protection against malaria.

Keywords: G6PD, polymorphism, PCR-RFLP, TNFα, MBL2, NOS2, mediterranean, Chatham and Cosenza.

Introduction

Malaria is an infectious disease caused by protozoan parasites. More than half of the world's population in approximately 100 countries is exposed to malaria with about one million deaths annually [1-3]. Iran is located in the Eastern Mediterranean region, where about 45% of the population live with the risk of having both falciparum and vivax malaria. The malaria endemic areas of Iran are located in the south-eastern part of the country, bordered in...
the south by the Persian Gulf and the Gulf of Oman and to the east by Afghanistan and Pakistan. The south-eastern part of Iran consists of the Sistan and Bluchistan province, the Hormozgan province and the tropical part of Kerman province with a combined population of approximately three millions and is considered to be a "refractory malaria region". Annual Parasite Incidence (API) was reported to be 8.74 per 1,000 population [1]. High frequency of some traits in malaria endemic areas suggested the strong selective pressure of malaria on human genome. These traits consist of: thalassemia, HLA antigens, and G6PD deficiency which are common in many areas, and have been shown to be related with the reduced susceptibility to severe malaria and the G6PD deficiency is indicated to be more important than others. This gives the selective advantage against severe malaria since prevalence of the G6PD deficiency has had 5% to 25% increase in comparison with other areas in malaria endemic area. The glucose 6-phosphate dehydrogenase is X-chromosome linked expressing in all tissues. This is the first enzyme of pentose phosphate pathway with 5-carbon sugar ribose and NADPH synthesized by coupled oxidation/reduction reactions. Moreover this enzyme is highly polymorphic in humans by which more than 160 different mutations have been identified so far. In addition, genetic variations in several other genes, including TNFα, MBL and NOS2 have been identified. The tumor necrosis factor-alpha (TNFα) is a key cytokine in pathogenesis of severe infectious diseases. The genetic susceptibility to severe form of malaria (cerebral malaria) is associated with TNFα promoter polymorphisms and high circulating levels of cytokines. Nonetheless the level of nitric-oxide (NO), which is related to polymorphisms in NOS2 gene, could play an important role in severity of many diseases including malaria. Mannose-binding lectin (MBL) is thought to play an important role in the innate immune defense. The ligands of MBL are high in mannose and N-acetylglucosamine oligosaccharides that presented on a variety of microorganisms. At present study, we investigate the frequency of common polymorphisms in NOS2 (1 polymorphism), MBL2 (3 polymorphisms), TNFα (3 polymorphisms) genes and G6PD(4 variants) which is related to protection against malaria in 315 healthy samples with G6PD deficiency and 10 samples of malaria patients without G6PD deficiency in five provinces (Fars, Khozestan, Esfahan, Yazd and Kerman)[13,31].

Methods

Study population and area: We collected 315 samples from non related healthy subjects with G6PD deficiency and 10 samples from patients who were hospitalized with the sign of malaria and their blood smears showed presence of the parasite. All samples were collected from Fars (34 samples), Khuzestan (100 samples), Esfahan (62 samples), Yazd (55 samples) and Kerman (64 samples) provinces of IRAN which comprised 30% of disease incidence of country. Informed consent was obtained from the subjects before sampling. All of the 315 samples had G6PD deficiency using dye reduction test.

DNA extraction: Genomic DNA was extracted from white blood cells using standard methods of DNA extraction (Phenol Cholorophorm and southing out).

DNA polymorphism analysis: All collected samples including the Mediterranean, Chatham, Cosenza, Aures and A-(376,202) variants were evaluated by DNA amplification with specific primer and digestion with restriction enzyme endonuclease (Table1). Amplification of DNA samples from Mediterranean, Chatham, Cosenza, A-(376,202) and Aures variants were 583bp, 208bp, 548bp,295bp,108bp and 352bp, respectively. To detect the genetic polymorphism of the NOS2-954 a 680-bp fragment of NOS2 promoter region was amplified. To detect TNFα
polymorphisms a 117-bp fragment of promoter region was amplified and next to detect MBL2 polymorphisms a 340-bp fragment amplified. PCR amplification was done using 2 μl of DNA in a total volume of 50 μl reaction mixture containing appropriate primers (Table 1). The amplified products were analyzed on 10% agarose gel and visualized with ethidium bromide staining. Eight micro liters of each amplified product was digested with 15 μl of reaction mixture containing 1U of appropriate restriction enzyme (Table 1). Inactivation of enzyme was performed with proteinase K after 1-12 hours incubation and the digestion solutions analyzed on 12% acrylamide gel and later visualized with silver-nitrate staining.

Table 1. The polymorphisms and variants with specific primers and restriction enzymes.

<table>
<thead>
<tr>
<th>Polymorphism and Variants</th>
<th>Primer sequence</th>
<th>Annealing temperature (°C)</th>
<th>Restriction Enzyme</th>
</tr>
</thead>
<tbody>
<tr>
<td>G6PD-med</td>
<td>Med-F 5’CCTCCTTCATTCTGAGGGGTT-3’ Med-R 5’-CATAGACCTGCTTCTTGGTGGG-3’</td>
<td>61</td>
<td>MboII</td>
</tr>
<tr>
<td>G6PD-Chat<sup>G1003A</sup></td>
<td>Chat-F 5’-CAATGACCTGCTTCTTGGTGGG-3’ Chat-R 5’-GACGAGAGCTCAGCGGCTTGT-3’</td>
<td>60</td>
<td>BstXI</td>
</tr>
<tr>
<td>G6PD-Coz<sup>G1367C</sup></td>
<td>Coz F 5’-AGGGAAAGCTGCTTCTTGGTGGG-3’ Coz R 5’-GACGAGAGCTCAGCGGCTTGT-3’</td>
<td>64</td>
<td>Bsu36I</td>
</tr>
<tr>
<td>G6PD<sup>A</sup> (G202A)</td>
<td>A202 F 5’- CCTCCTTCATTCTGAGGGGTT-3’ A202 R 5’-GACGAGAGCTCAGCGGCTTGT-3’</td>
<td>56</td>
<td>Nla III</td>
</tr>
<tr>
<td>G6PD<sup>A</sup> (A375G)</td>
<td>A375 F 5’-CTCGTGCTTCTTGGTGGGTTG-3’ A375 R 5’-GACGAGAGCTCAGCGGCTTGT-3’</td>
<td>61</td>
<td>FokI</td>
</tr>
<tr>
<td>G6PD Aures</td>
<td>TpFa1 5’-TTTCTCTTCTTGGTGGGTTG-3’ TpFa2 5’-CTCTCTTCTTGGTGGGTTG-3’</td>
<td>58</td>
<td>Bgl II</td>
</tr>
<tr>
<td>TNFa-308G→A</td>
<td>TNFa1 and TNFa2</td>
<td>58</td>
<td>Neol</td>
</tr>
<tr>
<td>TNFa-244G→A</td>
<td>MBL1 5’-CAAGCTTCCATCTTGGTGGGTTG-3’ MBL2 5’-CTCTCTTCTTGGTGGGTTG-3’</td>
<td>60</td>
<td>BspPI</td>
</tr>
<tr>
<td>MBL 57G→A</td>
<td>MBL1 and MBL2</td>
<td>60</td>
<td>MboII</td>
</tr>
<tr>
<td>MBL I-V I-5G→A</td>
<td>MBL1 and MBL2</td>
<td>60</td>
<td>HinfI</td>
</tr>
<tr>
<td>NOS2-954G→C</td>
<td>NOS2 1 5’-CTCTCTTCTTGGTGGGTTG-3’ NOS2 2 5’-CTCTCTTCTTGGTGGGTTG-3’</td>
<td>62</td>
<td>Eco31I</td>
</tr>
</tbody>
</table>

Statistical analysis: the two-sample kalmogorov-smirnov test was used to compare the distribution of host genetic variants in individuals with and without malaria.

Results

All the 315 subjects were screened through PCR-RFLP analysis for TNFa-244G→A, TNFa-308G→A, TNFa-238G→A, NOS2-954G→C, MBL54G→A, MBL 57G→A, MBL I-V I-5G, G6PD-med, G6PD-Chat, G6PD-Coz, G6PD A→ (G202A), G6PD A→ (A375G) and G6PD Aures. The frequency of NOS2-954G→A showed that 127 out of 315 (40.31%) healthy samples had GG genotype, 167 samples (53.01%) GC and 21 samples (6.66%) CC. All the 10 samples from malaria patients showed GG genotype. In TNFa-308, 217 out of 315 (68.8%) samples showed GG genotype, 98 samples (31.1%) AG genotype and none had AA. For TNFa-244, 298 of samples (94.60%) showed GG genotype and...
none had AA. All malaria patients showed GG genotype in this region. In TNF-238, 292 of samples (92.69%) showed GG genotype, 21 samples (6.66%) AG genotype and 2 of the samples (0.63%) AA genotype. All malaria patients had GG genotype in this region. In MBL54, 238 samples (75.55%) had GG genotype, 77 samples (24.44%) AG genotype and 2 samples (0.6%) AA genotype. Two samples of malaria patients (10%) had AG genotype and 80% GG genotype. In MBL57, 300 samples (95.23%) had GG genotype, 15 samples (4.76%) AG genotype and 2 samples (0.63%) AA genotype. Eight samples (80%) of malaria patient GG genotype and 20% AG genotype. In MBL IVS-I-5G, All 315 samples showed (100%) GG genotype and all malaria patients showed GG polymorphism. In studying of
G6PD variant indicated that Mediterranean mutation in Fars, Khuzestan, Esfahan, Yazd and Kerman provinces was 79.4%, 58%, 83.8%, 64% and 63% respectively. Also, Chatham mutation was 8.8%, 8%, 4.5%, 3.6% and 0% respectively. Finally, other four mutations analyzed were Cosenza, A-202 (G→A), A-367 (A→G) and Aures (T→C) in which none had these mutations.

Difference between distribution of each genotype variants in healthy and patients objects was studied by two-sample Kalmogorov-Smirnov test, to find the relation between these genotype and protection against malaria. Only distribution of NOS2-954C (p=0.002 by two-sample Kalmogorov-Smirnov test) supported this theory.

Discussion

Malaria is known to be a dangerous and tremendously successful pathogen that is responsible for 300 million cases of infection with and one million deaths annually [3,4]. Plasmodium falciparum is the causative agent of malaria. Although the disease is caused by a parasite, the host plays a major role in the disease process, with some individuals being more susceptible than others. The specific mechanism by which individuals are protected against malaria is not fully understood, but it is likely that individual variations in immune responses and host genetics play a role.

Malaria is caused by Plasmodium falciparum, a protozoan that invades red blood cells and multiplies within them. When these infected cells rupture, they release merozoites, which then infect other red blood cells, leading to a cycle of infection. This cycle results in fever, chills, and other symptoms characteristic of malaria. The disease is transmitted to humans by the bite of an infected Anopheles mosquito, which injects the parasites into the bloodstream.

Plasmodium falciparum is responsible for the most severe form of malaria, characterized by cerebral malaria and severe anemia. The parasite can Séquestre internal spaces in the brain, leading to impaired function and death. The disease is prevalent in tropical regions of the world, including Africa, South America, and Southeast Asia.

Plasmodium falciparum is an apicomplexan parasite that has evolved several mechanisms to evade the host immune response and avoid detection by the host's immune system. One strategy is to sequester in the brain, which is not accessible to immune cells.

The genome of Plasmodium falciparum contains a variety of genes that encode proteins involved in different aspects of the parasite's biology, including adhesion molecules that enable the parasite to attach to red blood cells, digestive enzymes that allow the parasite to digest host cell components, and genes involved in the development of the parasite within the host cell.

Genetic variation in the parasite can lead to differences in its ability to evade the host immune response and cause disease. Some mutations are associated with increased virulence, while others are associated with increased resistance to antimalarial drugs. Understanding the genetic basis of these traits is important for developing strategies to control and prevent malaria.

Established strategies for malaria control include the use of insecticides and antimalarial drugs, as well as strategies to reduce the number of mosquito bites through the use of bed nets and other measures. However, these strategies are becoming less effective due to the emergence of drug-resistant strains of the parasite and the development of insecticide resistance in mosquito populations.

The development of new antimalarial drugs and vaccines is crucial for the control and prevention of malaria. New antimalarial drugs are needed to address the threat of drug-resistant strains of the parasite, while vaccines are needed to prevent infection and reduce the burden of disease.

Chart 1. Distribution of NOS2-954 alleles in healthy individuals and patients.

367(A→G) and Aures (T→C) in which none had these mutations.

Difference between distribution of each genotype variants in healthy and patients objects was studied by two-sample Kalmogorov-Smirnov test, to find the relation between these genotype and protection against malaria. Only distribution of NOS2-954C (p=0.002 by two-sample Kalmogorov-Smirnov test) supported this theory.

Discussion

Malaria is known to be a dangerous and tremendously successful pathogen that is responsible for 300 million cases of infection with and one million deaths annually [3,4]. Plasmodium falciparum is the causative agent of malaria. Although the disease is caused by a parasite, the host plays a major role in the disease process, with some individuals being more susceptible than others. The specific mechanism by which individuals are protected against malaria is not fully understood, but it is likely that individual variations in immune responses and host genetics play a role.
in more than one million children in Africa. Other species of this parasite, *p. vivax*, *p. Malariae*, *p. Ovale*, can also infect humans. The genetic diversity of the parasite, generated by its sexual stage, provides the organism with many opportunities to maximally adapt to host defenses and continue transmission. Due to the length of exposure time, and significant effects on morbidity and mortality by infection, it has exerted a strong selective pressure on the human genome, and causes mutations in human genes which promote survival in areas where malaria is endemic [33]. Protection against this microorganism is provided with the polymorphisms generated in the human genome after many generations [32]. Large numbers of these polymorphisms have been found in genes which codes erythrocytes protein and cytokines. The relation between some human traits and severity of malaria infection, has been well documented [34]. These traits mainly found in red blood cell disorders like sickle cell anemia, thalassemia and other traits like G6PD deficiency [35,36]. The protection against malaria is suggested to be related to polymorphisms in more than 30 genes [1]. Investigations have indicated that a number of variants are involved including those of the major histocompatibility complex and a cytokine-gene cluster on Chromosome 5q31-q33 [38, 39].

The TNFα codes by TNF genes located in MHC class III nearby MHC class I and II, and is a pro-inflammatory cytokine that plays an essential role in the protection against many infections including malaria, but also fatal when produced in excess [41, 42]. A study on Burkina Faso families revealed the linkage of mild malaria to the MHC region genes with a peak close to TNF [43]. Variaty of polymorphisms in promoter region of TNF gene are related to severity of infectio. It has revealed that Gambian childrens who harbor homozygous TNF-308A allele are more susceptible to cerebral malaria [9]. Other studies in Gabon, Serilanka and kenia suggested individual who carries this allele are more susceptible to recurrence of...
plasmodium infection or death [45,46]. The
TNF-376A play role in binding to transcription
factor, OCT-1 and susceptibility to the cerebral
malaria, and the TNF-238A is related to suscep-
tibility to the malarial anemia. Nevertheless, re-
sults about the role of TNF polymorphisms in
protection against malaria are conflicting [9,
47].

Several findings suggested single nucleotide
polymorphisms (SNPs) in 5‘ regulatory site of
TNF gene and in coding region of FCGR2A are
associated with susceptibility to plasmodium
falciparum Malaria [9,49,50,52]. The tumor
necrosis factor alpha (TNF) have role in many
inflammatory responses and also play an im-
portant role in pathogenesis of many infectious
diseases such as plasmodium falciparum
Malaria [10]. Transcription of TNF gene is
complex and well regulated [55], and it has re-
vealed that SNPs in 5‘ regulatory region of this
gene are related with variety of infectious and
inflammatory diseases [56,57]. SNPs in -1031,
-857, -376 (1800750,G>A), -308 and -238 are
located in regulatory region of TNF gene and
associated with TNF production as well as pro-
tection against Malaria in different populations
[50,52,49,60,61]. Taking this, it seems impor-
tant to discover TNF special responses. A study
on polymorphisms of TNF-enhancer and gene
for FcγRIIa correlate with the severity and di-
versity of falciparum malaria in the ethnically
diverse Indian population [61]. This differences
has been also reported in 17 regions of Africa
and Burkina Faso [62,21,25].

In our study three polymorphisms in promotor
region of TNFα gene were analyzed based on
the two-sample kalmogorov-smiranov test.

Comparison of genotype frequency for the
TNFα polymorphisms, between healthy people
and malaria patient revealed no significant dif-
fERENCE (p>0.01).

Several studies suggested that the presence
of the different variant alleles in the MBL gene
is associated with an increased tendency for in-
fections [7,27,28]. According to two-sam-
ple kalmogorov-smiranov test, no association in
frequency distribution of MBL variant alleles
and susceptibility to malaria infection was
found. A study among Gambian children also,
has shown no relation between MBL deficiency
and malaria [29]. Another study among young
Gabonese children has found a weak correla-
tion between the MBL deficiency and severe
malaria [23]. This study also suggested the
MBL deficiency may not be associated with
malaria, but it could be a risk factor for severe
malaria in children who lack well developed
protective acquired immune responses [30].

Nitric oxide has been determined to possess
antiparasitic activity [31], and our results
shown an association between NOS2-954GC
alleles and susceptibility to malaria (p=0.002
by two-sample kalmogorov-smiranov test). A
study among Gabonian individuals shown het-
erozygous carriers for NOS-G954C are protect-
ed against malaria as effectively as sickle cell
trait [8]. Another study showed no significant
difference in multiplicity of infection between
children who were heterozygous for NOS2-954C and those with wild type alleles [23].

We found that the G6PD Mediterranean, was the most common G6PD deficient variant in these five provinces, which accounts for 69.56% of the 315 analyzed samples. Similar to other parts of Iran [13,23], in the majority of the people in these provinces, favism is most probably due to Gd-Med, which may suggest a common origin for the populations in Iran and the Mediterranean. It should be emphasized also that G6PD Mediterranean frequency reached 91.2% in Kermanshah province [23]. Our data showed that on the average, in Iranian population, the Chatham mutation was the next one in five provinces, and accounts for 4.95% [23]. Although the origin of the Iranian population is rather uncertain, but the closer similarity of the mutational spectrum to Italian (80-84% for Mediterranean, 20% for Chatham and 1.9% for Cosenza) rather than Middle East population may indicate a common ancestry origin [7-25,3-34].

Acknowledgments

This work supported by grants from the National Research Center for Genetic Engineering and Biotechnology (NRCGEB) and Tehran University of Medical Sciences and health services, Tehran, Iran.

References

18. Summerfield JA, Sumiya M, Levin M, Turner MW. Association of mutations in mannose binding protein gene with childhood infection in consecutive hospi-

