Comparison of the postural control between football players following ACL reconstruction and healthy subjects

Gholamreza Pahnabi¹, Mohammad Akbari², Noureddin Nakhhostin Ansari³
Mahmoud Mardani⁴, Mehdi Ahmadi⁵, Mohamad Rostami⁶

Received: 25 October 2013 Accepted: 20 November 2013 Published: 21 September 2014

Abstract
Background: Rupture of the Anterior Cruciate Ligament (ACL) is a common knee injury. The purpose of this study was to determine the balance control in football players with and without ACL reconstruction in posture of injury.

Methods: Sway of the center of gravity of 15 patients with ACL reconstruction was compared with 15 healthy, age and sex-matched subjects as the control group. All tests were done unilaterally in the posture of injury, using a kistler force plate with the open and -closed eye conditions.

Results: The knee of the operated side of the case group showed more displacement of the center of gravity when compared to the non-operated side in the same subject for all variables of the force plate. The operated side of the case group showed more displacement of the center of gravity for all variables of the force plate in comparison with the dominant side of knees in control group. There were significant differences between the non-operated side in the case group and the dominant side of the control group.

Conclusion: All together, postural control in the operated side of the case group was weaker than the non-operated side of the same group and the dominant limb of the control group, which might have resulted from poor proprioception. The postural control was even weaker in the non-operated side of the case group as compared with the dominant limb of the control group, which can justify the hypo mobility of limb for several months after the surgery.

Keywords: Anterior cruciate ligament, Postural control, Reconstruction.

Introduction
Anterior Cruciate ligament (ACL) sprains are one of the most common knee injuries. In the United States, 100000 to 200000 of these injuries are reported annually which makes them the most common ligament injury in the country (1- 4). This number continues to rise in both the general population and athletes (4). Football players comprise the greatest number of ACL injuries (53% of the total) and skiers and gymnasts are also at a high risk (4). For the past twenty years, surgical techniques for Anterior Cruciate Ligament Reconstruction (ACLR) and post-operative rehabilitation have become highly developed, which enables the patients to resume sports activities at the pre-operative levels (5). However, a long time is still needed for full recovery and gaining the previous activity level (5, 6). The recovery period imposes mental, physical, and economic burdens on the pa-

1. MSc, Department of Physical Therapy, School of Rehabilitation, Tehran University of Medical Sciences, Tehran, Iran. gholamreza_pahnabi@yahoo.com.
2. (Corresponding author) PhD, Professor, Department of Physical Therapy, School of Rehabilitation Sciences, Iran University of Medical Sciences, Tehran, Iran. akbari.mo@iums.ac.ir.
3. PhD, Professor, Department of Physical Therapy, School of Rehabilitation, Tehran University of Medical Sciences, Tehran, Iran. nakhhostin@tums.ac.ir.
4. MD, Orthopedic Surgeon, Laleh hospital, Tehran, Iran. mahmoud_mardani@yahoo.com
5. MSc Student, Department of Physical Therapy, School of Rehabilitation, Tehran University of Medical Sciences, Tehran, Iran. mehdi_ahmadi@yahoo.com.
6. BCS of Physical Therapy, School of Rehabilitation, Tehran University of Medical Sciences, Tehran, Iran. dr_cinohe67@yahoo.com.
The study protocol was approved by the ethics committee of the University of sciences.

Previous studies indicate that gender and anatomical features such as the width of the intercondylar notch are related to the ACL injury. However, both the gender and anatomical features are non-modifiable risk factors (7).

Furthermore, according to video observational analysis studies, most of the ACL injuries are caused by a noncontact mechanism, suggesting that the dynamic knee valgus is one of the highest risk injury mechanisms (7). Other biomechanical studies also suggest knee valgus, slightly bent knee and internal or external rotation of the knee as a risk factor for anterior cruciate ligament injury (7, 8).

The ACL is a critical component of the knee joint. Although there is disagreement about the significance of its role, evidence suggests that ACL injury can lead to the impairment of the postural control during upright stance in both double- and single-leg stance positions and on either the injured or the uninjured leg (9). Moreover, these changes have also been observed in individuals with ACL reconstruction (10). One possible explanation is that with ACL injury, sensory stimuli from the injured leg that signal position and movement of this leg are decreased and as a result, a larger body sway is perceived. Thus, the ACL is more than a mechanical constrainer of the knee joint and can be defined as an important sensorimotor component for the postural control (9, 10).

The reconstruction surgery is typically recommended following ACL rupture to restore the mechanical stability for the knee and to subsequently resume the normal function, including sports participation (11). Previous researches have indeed shown excellent restoration of knee joint stability and function following ACL reconstruction surgery. However, there are controversial results regarding the restoration of sensory function following ACL reconstruction surgery. A growing body of literature supports the recovery of postural control following ACL reconstruction surgery. However, the extent to which postural control is restored and the mechanism of the restoration of the postural control following surgery are yet to be fully elucidated (11).

The purpose of this study was to determine the sway of the center for gravity in football players with and without ACL reconstruction seven months after the surgery.

Methods
This was a cross-section study in which the postural stability evaluated in 15 football players after a single ACLR (mean ± S.D. age: 23.13 ± 0.99 years; height: 176.88 ± 1.82 cm; weight: 76.76 ± 1.69 kg) and a control group consisting of 15 age- and activity-matched subjects (age: 23 ± 1.06 years; height: 175.4 ± 2.32 cm; weight: 75.62 ± 2.1 kg). The sample size was determined based on the significance level, power, and magnitude of the difference (effect size) of previous studies (9, 10, 12 - 15) by G power software (16).

All recruited patients had undergone the same type of ACLR (arthroscopically-assisted central bone-patellar tendon–bone graft) and had returned to competitive activities (after an average time interval of 7 months ± 2 weeks). The study protocol was approved by the ethics committee of Tehran University of Medical Sciences. All subjects signed written informed consent to participate in this study.

The subjects were selected to participate based on the following inclusion criteria:
I. Only one surgical intervention for a torn ACL, with no concomitant tear of the posterior cruciate ligament or other ligaments of both knees.
II. Unilateral knee ACLR (right leg).
III. No evidence of collateral ligament repair at the time of surgery.
IV. No history of surgery or traumatic in-
jury to the contralateral knee.
V. No history of surgery or traumatic injur
y to the ankle or hip joints on the ei
ther side.
VI. No history of a medical problem that
limited activities within the 6 weeks pri
or to testing.
VII. Full return to the previous competi
tive level.
VIII. No complaints concerning instability.
IX. All reconstructions done by the same
surgeon after acute ACL injury.
X. Physical therapy intervention done
completely (7 months).

Exclusion criteria were subjects with pre
vious knee injuries on the target side, neu
rological disease, sprain of other knee lig
aments, bilateral ACL sprains, instability or
pain at rest in the knee, sprain of the non
dominant or the left dominant limb.

Test procedures
Subjects were asked to take part in a test
ning session. The test order for the postural
stability and single-leg stance tests were ran
domized to avoid learning or fatigue ef
fects.

All tests were done in unilateral standing
on the bare foot on each side. Three trials
were carried out with open and closed eyes.
When the eyes were open, the subjects’
glance aimed at a fixed point at a 1-meter
distance on the front wall. The test duration
was 30 seconds while keeping the arms
along the body. The 100Hz frequency was
chosen to obtain a better detection of the
movements on the center of pressure by
kistler force platform. On unilateral standing,
the stance foot was at the center of the
zero reference of the platform and the test
ing leg had contact with the opposite leg.

Static unilateral standing tests began with
the non-ACLR side or ACLR side random
ly. The knee was positioned in the 20-deg
ee angle of flexion, valgus and internal ro
tation (posture of injury). One minute rest
was provided between every test repetition.
Three studied parameters were: medio
lateral axis (distance X) and an anterior–
posterior axis (distance Y) movement dis
tance of the center of pressure and the ve
locity of center of pressure sway.

The data were collected over a five month
period and analyzed using SPSS software
version 17. Normal distribution was eval
uated using Kolmogrov Smirnov test. Paired
t-test was used for comparing the data of
the right and the left lower limbs of the
case group. The independent test-t was
used to compare variables between the cas
es and the controls.

Result
The two groups were matched for age,
height, and weight.

The operated side (OS) of the case group
showed more displacement of the COG for
all variables of the force plate as compared
to the nonoperated side (NOS) (Table 1).

The OS of the case group presented more
displacement of the COG for all variables
of the force plate in comparison with the
dominant limb of the control group (Table
2).

There was a significant difference be
tween the NOS of the case group and the
dominant side of the control group (Table
3).

Table 1. The COG displacement of the case
group (operated and nonoperated side)

<table>
<thead>
<tr>
<th>Variables</th>
<th>Open eyes</th>
<th>Displacement around ant.-post. axis(cm)</th>
<th>6.63±1.05</th>
<th>4.37</th>
<th>8.88</th>
<th>0.001</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Displacement around med.-lat. axis(cm)</td>
<td>2.75±1.39</td>
<td>-0.25</td>
<td>5.75</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total velocity(cm/sec)</td>
<td>0.82±0.27</td>
<td>0.24</td>
<td>1.38</td>
<td>0.009</td>
</tr>
<tr>
<td>Close eyes</td>
<td>Close eyes</td>
<td>Displacement around ant.-post. axis(cm)</td>
<td>6.44±1.17</td>
<td>3.93</td>
<td>8.95</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Displacement around med.-lat. axis(cm)</td>
<td>0.67±0.08</td>
<td>-1.14</td>
<td>2.49</td>
<td>0.04</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total velocity(cm/sec)</td>
<td>0.61±0.25</td>
<td>0.07</td>
<td>1.15</td>
<td>0.03</td>
</tr>
</tbody>
</table>
Discussion

The operated side of the case group versus the dominant side of the control group:

In our study, the OS of the case group was higher in all variables of the force plate (total velocity, displacement at the anterior-posterior axis and medial-lateral axis) in open- and closed-eyes conditions as compared to the dominant side of the control group. According to these results, one leg standing balance of the case group knees was significantly weaker than the dominant side of the control group.

Many studies suggest that the ACL receptors and the receptors in other knee structures have a fundamental role in maintaining the dynamic joint stability based on the existing neuronal reflex pathways between the knee and the thigh muscle systems (11). The ACL’s proprioceptive neurophysiological function has been considered to be as important as its biomechanical role in maintaining joint stability(10). However, after ACLR, the ACL function of will not restore fully. One can infer that ACL reconstruction does not restore motor control deficits associated with the original injury (9, 17).

The non-operated leg of the case group versus the dominant leg of the control group: According to our findings, the NOS of the case group showed more displacement around ant., later., and total variables. One speculative explanation for the aforementioned phenomena is that individuals with ACL injury may overload the contralateral (the uninjured ACL) leg. In such a case, the uninjured leg might be overstressed and fatigued leading to a decrease in performance compared to the control group (9). Another possible explanation might be reduction of neural signal transmission in the injured leg because of the ACL lesion; leading to malfunctioning of, the motor control system would have difficulties in controlling two limbs with different sensory input properties and, also to avoid such an asymmetric control, the performance of the uninjured leg (18).

Operated leg versus NOS of the case group: Based on our findings, the OS of the case group was higher when compared to...
the declined NOS for all variables of the force plate in open- and closed eyed condition. According to these results, one-leg standing balance of the subject with ACLR knees was significantly impaired versus the non-operated side.

These results are not congruent with some of the previous investigations (15.17) probably due to: 1) Individuals with ACL injury have reduced sensory inputs for position sense and movement detection from the knee joint after reconstruction surgery and this reduction seems to contribute to the observed larger body sway (9). 2) The interval between the surgery and the date when the evaluation was performed and 3) different postures of evaluation.

For the first time, in these study confounding factors such as age, height, weight, surgeon, type of surgery, preoperative level of actuality, type of activity and gender which involved in the assessment of postural control were excluded from the study.

The limitations of this study: A) Lack of a sufficient number of female for comparing gender effects on postural control subjects after anterior cruciate ligament reconstruction surgery. B) Assessing of functional status has been more dynamic than static state. These can be examined in future studies.

Conclusion
Altogether, it can be concluded that the postural control in the operated limb of the case group was weaker than the non-operated limb of the same group and the dominant limb of the control group, due to the poor proprioception. The postural control ability of the non-operated limb of the case group was even weaker than the dominant limb of the control group, which can be related to months of the hypo mobility in limb after the surgery.

Acknowledgements
The present study was conducted with the financial support of the research deputy of Tehran University of Medical Sciences. The researchers hereby express their gratitude for the provided supports.

Conflict of Interests
There is not any conflict of interest between the coauthors.

References
11. Ardern, Brooke E, Howells Kate E, Webster, Clare L. Is postural control restored following anterior cruciate ligament reconstruction? A

