Inequality of obesity and socioeconomic factors in Iran: a systematic review and meta-analyses

Shirin Djalalinia¹, Niloofar Peykari², Mostafa Qorbani³, Bagher Larijani⁴
Farshad Farzadfar⁵

Received: 11 January 2015 Accepted: 4 April 2015 Published: 25 July 2015

Abstract
Background: Socioeconomic status and demographic factors, such as education, occupation, place of residence, gender, age, and marital status have been reported to be associated with obesity. We conducted a systematic review to summarize evidences on associations between socioeconomic factors and obesity/overweight in Iranian population.

Methods: We systematically searched international databases; ISI, PubMed/Medline, Scopus, and national databases Iran-medex, IranDoc, and Scientific Information Database (SID). We refined data for associations between socioeconomic factors and obesity/overweight by sex, age, province, and year. There were no limitations for time and languages.

Results: Based on our search strategy we found 151 records; of them 139 were from international databases and the remaining 12 were obtained from national databases. After removing duplicates, via the refining steps, only 119 articles were found related to our study domains. Extracted results were attributed to 146596 person/data from included studies. Increased ages, low educational levels, being married, residence in urban area, as well as female sex were clearly associated with obesity.

Conclusion: Results could be useful for better health policy and more planned studies in this field. These also could be used for future complementary analyses.

Keywords: Obesity, Socioeconomic factors, Iran.

Introduction
The prevalence of obesity and its health adverse outcomes continues to rise worldwide with alarming rates in developed and developing countries (1-3). Obesity and overweight are considered as one of the leading preventable causes of attributable morbidity and death worldwide (1, 4, 5).

Co-morbidities are either directly caused by increased weight or indirectly related to mechanisms sharing a common cause such as unhealthy behaviors that are mostly affected by socio-economic factors (SEFs) and other related determinants (6).

Evidences revealed that substantial proportion of excess weight mortality intricate-
Inequality of obesity and socioeconomic factors

Inequality of obesity and socioeconomic factors

It is associated with SEFs (6, 7). These findings suggest the importance of social inequalities effects on unhealthy behaviors (8, 9). It is noticeable that some modifiable lifestyle behaviors and factors relating to SEFs may influence these emerging health programs (10).

Recent evidences have shown that, in developing countries, the burden of obesity tend to shift toward some specific socioeconomic groups (2, 11, 12). Socioeconomic status and demographic factors, such as education, occupation, place of residence, gender, age, and marital status have been reported to be associated with excess weight (7). These patterns are mostly complex, dynamic, and may be differ between countries and sub-groups populations (11).

It is clear that decisions about the design, feasibility, planning, funding, implementation, and management of preventive or controlling programs require the most accurate and reliable evidence provided through related researches (3, 13-15). Health researchers, professionals and policy-makers call for valid evidences to monitor, prevent, and control of obesity problems (12, 13).

Despite priority of the problem, there is an evident gap in the related literature on these topics (1, 2, 15-18). This study aimed to assess the association between SEFs and obesity/overweight in Iranian population. We followed a comprehensive approach to conducting an up-to-date systematic review and meta-analytic comparison of all available studies.

Methods

Search strategy

To assess papers on obesity and/or overweight and related socio-economic factors in Iranian population, the relevant empirical literature searched through several electronic databases, including: main domestic databases: IranMedex, SID and Irandoc

<table>
<thead>
<tr>
<th>Domain</th>
<th>Search strategy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obesity/overweight</td>
<td>Search strategy in PubMed/Medline</td>
</tr>
<tr>
<td></td>
<td>Search strategy in ISI Web of Science</td>
</tr>
<tr>
<td></td>
<td>Topic= ("Body Mass Index" OR "Overweight" OR " Obesity" OR "Quetelet* Index") AND (("Iran" OR Iranian OR I.R.Iran OR "persia") OR Address= (Iran))</td>
</tr>
<tr>
<td></td>
<td>Search strategy in Scopus</td>
</tr>
<tr>
<td></td>
<td>(TITLE-ABS-KEY (Body Mass Index" OR "Overweight" OR " Obesity" OR "Quetelet* Index") AND (TITLE-ABS-KEY (Iran OR Iranian OR I.R.Iran OR Persia) OR (AFFIL (Iran))</td>
</tr>
<tr>
<td></td>
<td>IranMedex, SID and Irandoc</td>
</tr>
</tbody>
</table>
to obtain the most comprehensive results, we searched these data sources using Medical Subject Headings (MeSH) terms, Emtree, and related equal Persian key words for Iranian databases. The references and citations of relevant articles were also assessed. There was no limitation on age, time, and language (Table 1).

Definitions
Overweight and obesity were defined as $25 \leq \text{BMI} < 30$ and $\text{BMI} \leq 30$, respectively (19). SEFs considered as social and economic factors that differentiate the individuals or groups within the social structure. These factors included the social and economic experiences and realities that help mold one’s personality, attitudes, and lifestyle (20) (Table 2).

Study selection and eligibility criteria
We included all available related original and systematic review papers that met our search protocol criteria and excluded articles with duplicate citation. Aim to study selection, at the first phase, a reviewer check out all searched titles. Non-relevant papers deleted and those were crossed research objectives’ were kept for more evaluation in the next level. In abstract review phase papers were evaluated, in more detailed, considering reported values or related indexes. In final step, remained papers exactly reviewed based on their full-text contents. When there were multiple publications on the same population, only the largest study or the main source of data was included.

Quality assessment and data extraction
The quality assessment and data extraction of eligible papers has been followed independently by two research experts and probable discrepancy between them resolved based on third expert opinion. Using Cohen’s kappa statistic, agreement of them in quality assessment was 0.92.

Quality assessment form has three parts: general information about the study, sampling quality, and measurement quality. Each study had a unique code and its general information such as the name and characteristics of the corresponding author have been inserted at the top of the form. The sampling quality refers to response rate, sample size, and sampling design and the measurement quality includes type of measurement tools, and accuracy of measurement. The final decision was based on the total scores obtained by each paper in ranking scale of: excellent (13-19), good (6-12) or poor (≤ 5). Poor quality papers

<table>
<thead>
<tr>
<th>Socioeconomic factors</th>
<th>Classic Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age group</td>
<td>Persons classified by age from birth (INFANT, NEWBORN) to octogenarians and older (AGED, 80 AND OVER).</td>
</tr>
<tr>
<td>Sex</td>
<td>The totality of characteristics of reproductive structure, functions, PHENOTYPE, and GENOTYPE, differentiating the MALE from the FEMALE organism.</td>
</tr>
<tr>
<td>Educational level</td>
<td>Educational attainment or level of education of individuals.</td>
</tr>
<tr>
<td>Marital status</td>
<td>A demographic parameter indicating a person's status with respect to marriage, divorce, widowhood, singleness, etc.</td>
</tr>
<tr>
<td>Occupation</td>
<td>Crafts, trades, professions, or other means of earning a living.</td>
</tr>
<tr>
<td>Income</td>
<td>Revenues or receipts accruing from business enterprise, labor, or invested capital.</td>
</tr>
<tr>
<td>Residence characteristics</td>
<td>Elements of residence that characterize a population. They are applicable in determining need for and utilization of health services.</td>
</tr>
<tr>
<td>Urbanization</td>
<td>The process whereby a society changes from a rural to an urban way of life. It refers also to the gradual increase in the proportion of people living in urban areas.</td>
</tr>
<tr>
<td>Social condition</td>
<td>The state of society as it exists or in flux. While it usually refers to society as a whole in a specified geographical or political region, it is applicable also to restricted strata of a society.</td>
</tr>
<tr>
<td>Social class</td>
<td>A stratum of people with similar position and prestige; includes social stratification. Social class is measured by criteria such as education, occupation, and income.</td>
</tr>
</tbody>
</table>
have been deleted and two other categories considered for data extraction processes.

Data were collected according to a standard protocol including the citation of paper, study design and setting, study year, participants and their recruitment, sex, age, reported Socio-economic Factors, OR (95% CI), main conclusions, and authors’ recommendations.

All included papers have been reviewed and the required information have been extracted and inserted in data extraction sheet. In brief, the data extraction sheet contains detailed information on prevalence or mean, standard deviation, standard error of mean, RO (95% CI), sample size, age, sex, province/district of the country, year, coverage of the study (representativeness), scope of study (rural/urban/both), and other related reported values.

Statistical analysis

The reported results are presented as Odds Ratio (OR) and 95% confidence interval (CI). For more precise comparison, the Odds Ratio (OR), Confidence Interval for 95% (CI 95%) were calculated for possible cases. Heterogeneity of reported values between studies was assessed by the Chi-square based Q test and I square statistics. The result of Q test was regarded to be statistically significant at P < 0.001. Due to severe heterogeneity among studies regarding reported values, overall OR was estimated using random-effect meta-analysis model (using the Der-Simonian and Laird method) (21). Forest plot also was used to present result of meta-analysis schematically. The analyses were conducted using STATA 11 software.

Ethical considerations

Present study has been approved by the ethical committee of Tehran University of Medical Science. All of included studies in our review would be cited in all reports and all publications of our study. Whenever we needed more information about a certain study, for obtaining required information, we contacted the corresponding author.

Results

We refined data for association between SEFs and obesity/overweight in Iranian population. Based on our search strategy we found 151 records; of them 139 were from international databases and the

Fig. 1. The flow diagram of the study selection process is shown in the
remaining 12 were obtained from national databases. After removing duplicates, via the refining steps, only 119 articles were found related to our study domain. The flow diagram of the study selection process is shown in the Fig. 1.

Table 3. The results of including papers on socioeconomic factors and obesity/overweight

<table>
<thead>
<tr>
<th>No</th>
<th>Ref</th>
<th>Study design and Setting</th>
<th>Study year</th>
<th>Participants and their recruitment</th>
<th>Sex (F/M or B: both)</th>
<th>Age (Year)</th>
<th>Socioeconomic Factors</th>
<th>Reported values</th>
<th>Main Conclusion</th>
<th>Recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Amani R. et al,(29)</td>
<td>Cross sectional, Population based/Ahvaz</td>
<td>2003</td>
<td>General Population, random sample/ n=637</td>
<td>F</td>
<td>Mean ± sd: 26.9±5.8 ys (18–40 years)</td>
<td>educational levels</td>
<td>illiterate (n=39) BMI:25.2±4.9 primary(n=242) BMI:26.6±4.9 secondary (n=217) BMI:25.8±4.7 higher (university) (n=139) 25±4.1 (p<0.02)</td>
<td>Women with less educational grades tend to have more body fat. There was Significant difference between BMI and body fat of primary and higher educational levels (P<0.02).</td>
<td>Further studies on related fields with a greater number of subjects of different minority groups are needed.</td>
</tr>
<tr>
<td>2</td>
<td>Asgari F, et al,(30)</td>
<td>Cross sectional, Population based/ (STEPS Survey)</td>
<td>2009</td>
<td>General Population, random sample/ n=20917 (51.8% female)</td>
<td>B</td>
<td>20±4 years</td>
<td>age/ sex/place of residence/ employment status</td>
<td>Obesity odds ratio</td>
<td>age: OR:30-40:2.48(2.20-2.80) female sex: OR:2.63(2.32-2.78) rural place of residence: OR:1.46(1.33-1.61)</td>
<td>OR of obesity went up with increasing age and then it decreased for ages above 50 years. men had lower BMI values than women Rural residents had higher odds of being obese compared with urban residents. Obesity may be more acceptable among unemployed people.</td>
</tr>
<tr>
<td>4</td>
<td>Azizi F, et al,(31)</td>
<td>Cross sectional, Population based/ Tehran</td>
<td>1999-2001</td>
<td>General Population, random sample/ n=1500 Tehranian children, adolescents, and adults, 44% males and 56% females.</td>
<td>B/ F (56%)</td>
<td>Nearly, 5 % of the study population was between 3–6 years, 6 % between 7–10 years, 9% between 11–14 years, 19% between 15–24 years, 17% between 25–34 years, 16% between 35–44 years, 12% between 45–54 years, and 10% between 55–64 years, and 7% over 64</td>
<td>sex</td>
<td>obesity was significantly higher in women than in men (29.5% vs 14.4 %, p < 0.001) the prevalence of overweight was greater in men than in women (42.5% vs 38.1%, p < 0.01). In adult population, the prevalence of central obesity (high WHR) was greater in women than in men (67.2% vs 33.0 %, p<0.001) Obese female:OR:2.72(2.42-3.07) Over weight female:OR:1.91(1.09-1.31)</td>
<td>More than 60% of adults in the present study were obese or overweight. Moreover, it is worth mentioning that more than 17% of the children and adolescents in our study suffered from obesity or overweight.</td>
<td>The results suggest a need for special attention to health status in Tehranian children and adolescents. In case of comparing TLGS data</td>
</tr>
</tbody>
</table>
Inequality of obesity and socioeconomic factors

<table>
<thead>
<tr>
<th>Study</th>
<th>Design</th>
<th>Population</th>
<th>Year</th>
<th>Gender</th>
<th>SES Status</th>
<th>Age (years)</th>
<th>Obesity Odds Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bakhshi E, et al. (2000)</td>
<td>Cross sectional, Population based/ National Health Survey (NHS)</td>
<td>General Population, cluster-stratified sampling</td>
<td>1999-2000</td>
<td>B/F</td>
<td>20-75 (mean: 36.9 y)</td>
<td>Obesity odds ratio</td>
<td>Among women, factors that increased obesity included age, low education, Among men, these factors included high economic index, low education.</td>
</tr>
<tr>
<td>Bezdadi S, et al. (2009-2010)</td>
<td>Cross sectional, Population based/Sari</td>
<td>General Population, multi-stage and stratified randomization</td>
<td>2009-2010</td>
<td>B/F</td>
<td>7-12</td>
<td>Higher prevalence of obesity in the children with good socio economic status was found (p=0.001).</td>
<td></td>
</tr>
<tr>
<td>Dastgiri S, et al. (2006)</td>
<td>Cross sectional, Population based/ Tabriz</td>
<td>General Population, Random sampling</td>
<td>2006</td>
<td>B/F</td>
<td>16+</td>
<td>Obesity odds ratio</td>
<td>In children with moderate SES the prevalence of overweight was 23% (151) and in children with good SES it was 34.9% (227) (p = 0.001).</td>
</tr>
<tr>
<td>Esmaeily H, et al. (2009)</td>
<td>Cross sectional, Population based/ Great Khorasan</td>
<td>General Population, Cluster-stratified sampling</td>
<td>2009</td>
<td>F</td>
<td>15-65</td>
<td>Obesity odds ratio</td>
<td>Mean BMI was significantly lower in men than in women (25.2 ± 4.9 vs. 27.1 ± 5.3 kg m²) , P = 0.001), while For both women and men obesity prevalence showed a positive association with age (P for trend 0.001), while there was a negative correlation of obesity with education and income (P for trend 0.001).</td>
</tr>
</tbody>
</table>

http://mjiri.iums.ac.ir
The findings of this study indicate that education level is inversely associated with general obesity in both sexes but with abdominal obesity only in women. Further studies are needed to explore lifestyle factors that are influenced or modified by education in men or women.

The marital status appears to influence the likelihood of developing overweight, obesity, and abdominal obesity in both sexes.

There is a need to assess the mechanisms for this association.

Results

<table>
<thead>
<tr>
<th>Study</th>
<th>Design</th>
<th>Measurement</th>
<th>Education Level</th>
<th>Sex/Marital Status</th>
<th>BMI</th>
<th>WHR</th>
</tr>
</thead>
</table>
| Hajian-Tilaki KO, et al. (36) | Cross sectional, Population based/ Mazandran | General Population, cluster sampling/ n:3600 | B/F (50%) 20-70 M: 38.5±14.3, F: 37.5±13.0 | education | Obesity odds ratio | Obesity prevention should be a relevant topic on the public health agenda in developing countries such as Iran. Without developing effective strategies to modify the current situation, it is likely that the obesity epidemic will continue in the future.

The mean BMI was significantly higher in married women and in women with less than 8 years of formal education. The mean WHR was significantly higher in women with less than 8 years of education or with more than 6 parity female adults. The prevention of overweight and obesity through a healthy diet and increased physical activity should now be an important priority area.

Regression analysis results indicated that gender (p < 0.001), place of residence (p < 0.001), literacy (p = 0.01), and source of income (p < 0.001) were significantly associated with the incidence of obesity. Results reinforce the need to plan strategies for primary prevention of this fast-growing public health problem.

<table>
<thead>
<tr>
<th>Study</th>
<th>Design</th>
<th>Measurement</th>
<th>Education Level</th>
<th>Sex/Marital Status</th>
<th>BMI</th>
<th>WHR</th>
</tr>
</thead>
</table>
| Shahraki M, et al. (37) | National Cross-sectional survey/National | General Population, stratified probability cluster sampling/ n:89440 | B/F (60.8%) 15-65 (Mean:39.2) | sex/marital status | Obesity odds ratio | Signifcant factors associated with obesity by a logistic regression model were education level (OR for university graduates v. illiterate or low literacy levels: 1.00 vs3.7 (P<0.001), and OR for married v. single subjects: 1.00 vs0.15; (p<0.001).

The mean BMI was significantly higher in married women and in women with less than 8 years of formal education. The mean WHR was significantly higher in women with less than 8 years of education or with more than 6 parity female adults. The prevention of overweight and obesity through a healthy diet and increased physical activity should now be an important priority area.

Regression analysis results indicated that gender (p < 0.001), place of residence (p < 0.001), literacy (p = 0.01), and source of income (p < 0.001) were significantly associated with the incidence of obesity. Results reinforce the need to plan strategies for primary prevention of this fast-growing public health problem.

<table>
<thead>
<tr>
<th>Study</th>
<th>Design</th>
<th>Measurement</th>
<th>Education Level</th>
<th>Sex/Marital Status</th>
<th>BMI</th>
<th>WHR</th>
</tr>
</thead>
</table>
| Tavassoli AA, et al. (39) | Cross sectional, Population based/ Islamshahr district | General Population, random sampling/ n:888 | F ≥20 education/marital status | Obesity odds ratio | Significant predictors of obesity (p<0.001). | Further studies are needed to explore lifestyle factors that are influenced or modified by education in men or women.

There is a need to assess the mechanisms for this association.

Results

<table>
<thead>
<tr>
<th>Study</th>
<th>Design</th>
<th>Measurement</th>
<th>Education Level</th>
<th>Sex/Marital Status</th>
<th>BMI</th>
<th>WHR</th>
</tr>
</thead>
</table>
| Nematy M, et al. (19) | Cross sectional, Population based/ Razavi-Khorasan Province | General Population, cluster random sampling/ n | B/(917/1045) 60 years /70.2±7.8 | sex/education | Obesity odds ratio | The findings of this study indicate that education level is inversely associated with general obesity in both sexes but with abdominal obesity only in women. Further studies are needed to explore lifestyle factors that are influenced or modified by education in men or women.

There is a need to assess the mechanisms for this association.

Results

<table>
<thead>
<tr>
<th>Study</th>
<th>Design</th>
<th>Measurement</th>
<th>Education Level</th>
<th>Sex/Marital Status</th>
<th>BMI</th>
<th>WHR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sh. Djalalinia, et al.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Inequality of obesity and socioeconomic factors

<table>
<thead>
<tr>
<th>Study Reference</th>
<th>Study Design</th>
<th>Study Population</th>
<th>Year</th>
<th>Sample Size</th>
<th>Age</th>
<th>Gender</th>
<th>Education</th>
<th>Occupation</th>
<th>Residence</th>
<th>Income</th>
<th>Marital Status</th>
<th>Employment</th>
<th>Family Members</th>
<th>Obesity Odds Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maddah M, et al. (2008)</td>
<td>Cross-sectional, Population based/ Rasht</td>
<td>General Population, random sampling/ n:4035</td>
<td>2008</td>
<td>B (6028 M, 6223 F)</td>
<td>38.6±5.9</td>
<td>education</td>
<td>Obesity odds ratio</td>
<td>High Education OR:0.97 (0.74-1.27)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The results of the present study showed significant differences in some factors associated with obesity among men and women; such differences should be taken into account for interventional programmes at the individual level and for providing long-term public health policies.

The association of different socioeconomic and lifestyle factors and their gender differences should be considered for culturally-appropriate intervention strategies to be implemented at the population level for tackling obesity and associated cardio-metabolic risk factors.

Preventive strategies need to be adopted to combat the epidemic of overweight and obesity in this population.

Being as HW is an independent significant factor for obesity in women. Preventive health care programs to reduce risk of obesity in women should be applied, considering their occupation for achieving more effectiveness.

These results highlight the importance of socioeconomic indicators in obesity research in Iran. Overall prevalence of overweight and obesity was positively related to educational level in men. The lowest rate of overweight/obesity was observed in very low educated men and very high educated women.
Table 3, shows the association of SEFs and obesity/overweight based on reported factors in eligible population-based studies. For more precise comparison, the OR and 95% confidence interval were calculated for possible cases. We have also included studies’ methodology information.

Considering the systematic review results, all included studies were cross-sectional ones. Eight articles were population-based studies and the others were clinical- and hospital-based. Regarding the geographic distribution, we found 4 national, 6 provincial, 5 community, and 1 district level studies. All participants were from general population. All of searched articles were in English or Persian language. Although, we haven't limit the search strategy on certain time; retrieving articles were between 1973 and 2014. Included articles were published between 2002 and 2014 and the studies were conducted between 1999 and 2010. In general, these results were attributed to 146596 person/data from included studies. Excluding 5 studies that focused on female sex, the remained studies covered both sex.

Only one study considered inequality assessment index about obesity. Based on first run of non-communicable disease surveillance study data (STEPs study, 2005) in Shahroud, concentration index for obesity was (0.038±0.036) for both sex. It was reported for female (-0.005±0.039) and male (0.194±0.070). It showed that obesity was more prevalent in men with high socioeconomic levels (22).

Other studies focused on different components of SEFs. The findings are scattered, with different ranges of values for Odds. On the other hand, non-standard classifications of SEFs led to greater complexity in estimation and comparability of the results. For instance, regarding the education, results have been presented as years of schooling through continue variables or different frame of categorization of educational levels. This factor, only in three studies has been reported by sex; among them the highest OR were reported for university educated persons vs. primary education (for women 0.41(0.31-0.63) and men 1.2+:0.62 (0.36-0.71)). Severe heterogeneity of overweight results, did not allow us to include them in meta-analyses.

The results of heterogeneity test (I squares) and estimated OR for related SEFs are presented in Table 4. Considering the severe heterogeneity among reported val-

<table>
<thead>
<tr>
<th>No</th>
<th>Variable</th>
<th>Practical definition</th>
<th>Number of studies</th>
<th>Model of meta-analyses</th>
<th>Estimated OR</th>
<th>95% CI of OR</th>
<th>Results of heterogeneity test (I squares)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Sex</td>
<td>Female vs. male</td>
<td>3</td>
<td>Random-effect meta-analysis model</td>
<td>2.06</td>
<td>1.45-2.93</td>
<td>88.9%, p=0.00</td>
</tr>
<tr>
<td>2</td>
<td>Age</td>
<td>30< vs. ≥30 yo</td>
<td>4</td>
<td>Random-effect meta-analysis model</td>
<td>1.66</td>
<td>1.24-2.22</td>
<td>99.2%, p=0.00</td>
</tr>
<tr>
<td>3</td>
<td>Marital status</td>
<td>Ever married vs. never married</td>
<td>6</td>
<td>Random-effect meta-analysis model</td>
<td>2.14</td>
<td>1.36-3.38</td>
<td>97.7%, p=0.00</td>
</tr>
<tr>
<td>4</td>
<td>Education</td>
<td>High education (more than 12yos) vs. low education</td>
<td>7</td>
<td>Random-effect meta-analysis model</td>
<td>0.60</td>
<td>0.43-0.83</td>
<td>92.9%, p=0.00</td>
</tr>
<tr>
<td>5</td>
<td>Living place</td>
<td>Urban vs. rural residence</td>
<td>5</td>
<td>Random-effect meta-analysis model</td>
<td>1.58</td>
<td>1.18-2.11</td>
<td>93.4%, p=0.00</td>
</tr>
</tbody>
</table>
Inequality of obesity and socioeconomic factors

Fig. 2. The forest plot of OR of obesity according to sex in Iran using random-effect mode

Fig. 3. The forest plot of OR of obesity according to age in Iran using random-effect mode

values, to overall estimation of OR, for possible variables, of SEFs, we used random-effect model.

Figs. 2-6 present the forest plot of eligible articles for estimating overall OR of obesity according to related SEFs in Iran.

Discussion
This is an updated systematic review on reported association between SEFs and obesity/overweight among the Iranian population according to sex, age, and levels of reported values, from 1973 to 2014. In our study, a total of 17 studies were eligible for inclusion. Our findings provide evidence-based data on the association between SEFs and obesity/overweight.

The analysis revealed that female sex (OR: 2.06, 95%CI: 1.45-2.93), age (OR: 1.66, 95%CI: 1.24-2.22), married status
(OR: 2.14, 95%CI: 1.36-3.8), and urban residency (OR: 1.58, 95%CI: 1.18-2.11) increase the risk of obesity. It is considerable that academic education (OR: 0.60, 95%CI: 0.43-0.83) have a reverse association with obesity. Other related studies showed a significant reverse association between low socio-economic situation and obesity/overweight, and direct association between factors such as: female sex, mar-
Inequality of obesity and socioeconomic factors

There are few studies on association between SEFs and obesity/overweight in Iran. Moreover the scarcity of data, different studies followed different approaches in their methodology. We also faced a large variety of combinations of unequal determinat factors. Considering above, a case by case, conservative approach was followed to make an accurate conclusion (17, 18, 26).

According to our analysis, age, sex, place of residence, employment, and marital status was studied based on available data. Based on them, age ≥ 30, female sex (vs. male), residence in rural areas (vs. urban), high education (vs. non-academic education), unemployment (vs. employment), and ever married situation (vs. never married) were independent significant factor for obesity (Table 3).

It is mentionable that, only one study considered inequality assessment index about obesity. Based on first run of non-communicable disease surveillance study data (STEPs study, 2005) in Shahroud, concentration index for obesity was 0.038±0.036 for both sex. It was reported -0.005±0.039 and 0.194±0.070 for female and male, respectively; it showed that obesity is most probable in high socioeconomic levels men (22).

Using principal component analysis, in a comprehensive analyses of national and sub-national mortality effects of metabolic risk factors and smoking in Iran, the sub-national regions were defined based on a combination of geography SES. SES was measured using an index constructed from variables from the 2006 census, including years of schooling, employment rates, and family assets (26).

In another national survey of school student with 5,528 student participant, aged 10–18 years, structural equation modeling (path analysis) was applied to evaluate the association between SES and BMI. In this study, higher socioeconomic status was directly associated with BMI in both sexes. In this study, indexes for evaluation of family’s SES were defined based on questions on the parental level of education, parental occupational status, number of inhabitants in home, and possessing a family private car (27).

In another related experience, to assess the prevalence of Iranian adolescents’
growth disorders, sub-national geographical and social classification of the country was considered as the base of SES for definition of living regions (28). It is also important that, there was no comprehensive study for sub-national evaluation of association between obesity / overweight and its related SEFs in Iran.

Considering the previous studies, the present study has several achievements. This study presents scientific evidences to depict association between SEFs and obesity/overweight among the Iranian population. All available sources of data and domestic data-bases were searched using English/Persian equivalent search terms. As the main limitation, the validity and applicability of our systematic review depends on the quality of the primary studies that are included. As another point, heterogeneity of searched results limits the generalization of our findings.

Conclusion

According to our knowledge, this is the first systematic review of association between SEFs and obesity/overweight in Iran that provide practical information on associations between several socio-demographic factors and obesity. Increased ages, low educational levels, being married, residence in urban area, as well as female sex were clearly associated with obesity. Results could be useful for better health policy and more planned studies in this field. These also can be used for future complementary analyses.

Conflict of interests

The authors declare that they have no competing interests.

Acknowledgements

This study was a part of a Ph.D. dissertation completed by Shirin Djalalinia. Project granted by Ministry of Health and Medical Education of Islamic Republic of Iran and Setad-e-Ejraye Farmane Imam. We would like to express our thanks to NCDRC. FF, SD, and NP participated in study design. SD, NP, and MQ drafted the manuscript. SD, MQ and NP participated in statistical analysis and interpretation of results. SD and NP participated in literature review and data extraction. FF, BL and SD participated in revision of paper. All authors read and approved the final manuscript.

References

Inequality of obesity and socioeconomic factors

35. Dastgiri S, Mahdavi R, TuTunchi H, Faramarzi E. Prevalence of obesity, food choices and socio-economic status: a cross-sectional study in the north-west of Iran. Public health nutrition