The effectiveness of FOBT vs. FIT: A meta-analysis on colorectal cancer screening test

Maryam Mousavinezhad¹, Reza Majdzadeh*,², Ali Akbari Sari³, Alireza Delavari⁴, Farideh Mohtasham⁵

Received: 18 September 2015 Accepted: 16 November 2015 Published: 9 May 2016

Abstract
Background: After lung and prostate cancers, colorectal cancer (CRC) is the third most common cancer in men and the second most common cancer in women after breast cancer worldwide. Every year, more than one million people are diagnosed with colorectal cancer worldwide and half of these patients die from this disease, making it the fourth leading cause of death in the world. This systematic review aimed to assess the effectiveness of the two colorectal diagnostic tests of FOBT (fecal occult blood test) and FIT (fecal immunochemical test) in terms of technical performance.

Methods: To retrieve the relevant evidence, appropriate medical databases such as Cochrane library, NHSEED, Scopus and Google scholar were searched from February 2013 to July 2014, using free-texts and Mesh. In this study, inclusion/exclusion criteria of the papers, randomized controlled trials, economic evaluations, systematic reviews, meta-analyses and meta-syntheses of the effectiveness of FIT versus FOBT tests in moderate-risk populations (age: 50 to 70 years), which had reported the least of such outcomes as sensitivity, specificity and clinical outcomes were reviewed. The analyses of the effectiveness outcomes were performed in the form of meta-analysis.

Results: Five papers were eligible to be included in the final phase of the study for synthesis. FIT showed a better performance in participation and positivity rate. Moreover, in terms of false positive and negative rate, FIT showed fewer rates compared to FOBT (RR: 4.06; 95% CI (-7.89-0.24)), and NN-scope (Number need to scope) (2.2% vs. 1.6%), and NN-screen (Number need to screen) (84% vs. 31-49% in different cut off levels) showed significant differences in FOBT vs. FIT, respectively.

Conclusion: In the five included studies (3, 11-14), the acceptability of FIT was more than FOBT. However, in our meta-analysis, no difference was found between the two tests. FIT was significant in positivity rate and had a better performance in participation rate, and a fewer false negative numbers compared to FOBT.

Keywords: Neoplasm, FOBT, FIT.

Introduction
After lung and prostate cancers, colorectal cancer (CRC) is the third most common cancer in men and the second most common cancer in women after breast cancer worldwide. Every year, more than one million people are diagnosed with colorectal cancer worldwide and half of these patients die from this disease, making it the fourth leading cause of death in the world (1). An appropriate population-based screening program in the early stages of precancerous lesions including early detection and removal of polyps and adenoma will reduce and prevent the incidence and mortality of CRC (2). According to the medical guidelines of the Western countries for screening people at average risk, the first-line screen-
The effectiveness of FOBT vs. FIT

Research Question
Which one of these tests (FOBT vs. FIT) is effective in term of different diagnostic validity indexes?

Study Objectives
This study aimed to assess the effectiveness of colorectal diagnostic tests (FOBT versus FIT) in terms of technical performance and to examine the ethical, organizational, social and legal aspects of this technology in those Iranians at moderate-risk of colorectal cancer.

Methods

Literature Search
This was a systematic review of the literature. Fourteen electronic reference databases were searched. Most major search sites in appropriate medical databases such as Cochrane library, NHSEED, Scopus and Google scholar were searched by proper keywords such as "neoplasm", fecal occult blood test", fecal immunochemical test" from February 2013 to July 2014 using free-texts and Mesh (Appendix 2). Gray literatures were searched via Google, the web sites of the Trial Registers Current Controlled Trial, the National Research Register, and Clinicaltrials.gov. In addition, references of all the included papers were searched to identify any additional relevant studies. Studies without control groups and non-English language studies were excluded. The titles and abstracts of the identified papers were checked to exclude non-relevant studies. The full texts of the remaining articles were checked against the inclusion-exclusion criteria. Papers were controlled independently by two reviewers. The risk of bias was checked by two reviewers independently.

The two reviewers independently screened the articles by title, abstract and full text and they then extracted the full texts of the articles, using a standard data extraction form and consulted a third investigator in cases of any disagreement.
Data were extracted by identifying the formation of articles, the study objectives, study design, inclusion and exclusion criteria of the studies, the intervention and control groups, joint interventions, covert interventions, method of randomization, blinding, potential confounding, outcome of the study, statistical analysis, baseline characteristics of patients and outcome events.

Scope

In this study, the inclusion/exclusion criteria of the papers, randomized controlled trials, economic evaluations, systematic reviews, meta-analyses and meta-syntheses of the effectiveness of FIT versus FOBT were reviewed.

PICO Question

Which of the two stool-based colorectal cancer screening tests (FOBT vs. FIT) is more effective to be used for an average-risk population (age: 50 to 70 years) in terms of technical performance rates?

Comparators: FOBT or FIT

Study Design: A Meta-analysis

Outcomes: The performance rate of the diagnostic test (sensitivity, specificity, positive predictive value, negative predictive value).

Quality Appraisal Method

The quality appraisal of the included RCTs was performed using JADAD checklist to evaluate the confounding factors used for RCTs apart from the clinical trials (Oxford quality scoring system, and independent evaluation of methodological quality of clinical trials). The analysis of technical performance outcomes was performed in the form of meta-analysis via the RevMan software (Version 5.3).

Results

In the first phase, 1,737 papers were retrieved; of them, 333 were duplicated, so they were excluded. From the 1,404 remaining papers, after checking the titles and abstracts, 1,339 articles did not meet the inclusion/exclusion criteria, so only 65 papers remained. After reviewing the full
texts, 44 articles were excluded because of their poor study design and inadequate control groups, and 21 papers remained in the final phase. All of the 21 articles were assessed with jaded checklist and 16 articles were excluded after reviewing their full texts because their quality was unclear due to not reporting the outcomes and existence of deficiencies both in sequence generation and allocation concealment. Finally, five articles were selected for the final analysis (3,11-14) (Fig. 1) (Appendix 3).

Four papers got 5 points and one study got 3 based on JADAD items (randomization, blinding and adequate sample size of patients) (Table 1). The five selected studies have been conducted from 2005 to 2013 in the Netherlands, Australia, Germany and France. In all the included studies, population-based screening was performed on the basis of FOBT and FIT kits in men and women in the age range of 75-50 years. Some studies reported test positive if at least one of the six kits had a color change (each panel contains two cards). FIT was positive at different cut off levels of fecal hemoglobin concentration per ml of sample buffer in case the color changed (in response to the hemoglobin molecule present in fecal samples). Most of the studies used FOBT in the form of hem occult non-rehydrated type (Beckman Coulter Inc. USA), and different brands were used for FIT.

A) Analysis of Common Indicators in Final Studies with the Rev Man Software

In this analysis, the significance cut off point was set at 0.05 for the p-value, and normal distribution and random effects model were also assumed.

A-1) In the comparative approach of

Table 1. Quality Appraisal of the Included RCTs

<table>
<thead>
<tr>
<th>Title</th>
<th>Study Design</th>
<th>Screening Test</th>
<th>Comparator</th>
<th>JADAD Checklist</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Screening for colorectal cancer: Random comparison of guaiac and immunochemical faecal occult blood testing at different cut-off levels</td>
<td>Diagnostic (RCT)</td>
<td>Hem occult (Beckman coulter,.Inc,Fullerton, CA, USA) non rehydration</td>
<td>OC-sensor (micro liken chemical co, Tokyo, Japan)</td>
<td>✓</td>
<td>5</td>
</tr>
<tr>
<td>Guaiac versus immunochromical tests: faecal occult blood test screening for colorectal cancer in a rural community</td>
<td>Diagnostic (RCT)</td>
<td>!form(enter ix)</td>
<td>OC-sensor (micro liken chemical co, Tokyo, Japan)</td>
<td>✓</td>
<td>3</td>
</tr>
<tr>
<td>Superior diagnostic performance of faecal immunochromical tests for haemoglobin in a head-to-head comparison with guaiac based faecal occult blood test among 2235 participants of screening colonoscopy</td>
<td>Diagnostic (RCT)</td>
<td>Hem occult (Beckman coulter, Krefeld, Germany)</td>
<td>1) Rid a screen haemo globin
2) Rid a screen haemo- hapto globin complex, R- Bio- pharm AG, Darmstadt, Germany
3) OC SEN-SOR, Tokyo, Japan OC- sensor (e liken chemical Co.)</td>
<td>✓</td>
<td>5</td>
</tr>
<tr>
<td>Random comparison of guaiac and immunochromical fecal occult blood tests for colorectal cancer in a screening population</td>
<td>Diagnostic (RCT)</td>
<td>Hem occult II (Beckman coulter)</td>
<td>Instant. view, alpha scientific designs, Poway, CA, USA</td>
<td>✓</td>
<td>5</td>
</tr>
</tbody>
</table>

The effectiveness of FOBT vs. FIT

http://mjiri.iums.ac.ir
FOBT vs. FIT at hemoglobin cut-off level of 50 ng/ml, three studies were included in which the specificity of the two tests was not significantly different in ruling out colorectal cancer (Appendix 4).

A-2) In the comparative approach of FOBT vs. FIT at hemoglobin cut-off level of 50 ng/ml, two studies were included in which specificity of the two tests was not significantly different in ruling out advanced adenoma (Appendix 4).

A-3) In the comparative approach of FOBT vs. FIT at hemoglobin cut-off level of 50 ng/ml, three studies were included in which the positive predictive value of the two tests was not significantly different in existence of colorectal cancer (Appendix 4).

A-4) In the comparative approach of FOBT vs. FIT at hemoglobin cut-off level of 50 ng/ml, three studies were included in which the positive predictive value of the two tests was not significantly different in existence of non-advanced adenoma (Appendix 4).

A-5) In the comparative approach of FOBT vs. FIT at hemoglobin cut-off level of 50 ng/ml, two studies were included in which the positive predictive value of the two tests was not significantly different in existence of advanced adenoma (Appendix 4).

A-6) In the comparative approach of FOBT vs. FIT at hemoglobin cut-off level of 50 ng/ml, two studies were included in which participation rates of the two tests were not significantly different (Appendix 4).

A-7) In the comparative approach of FOBT vs. FIT at hemoglobin cut-off level of 50 ng/ml, four studies were included in which the positivity rate of the two tests with heterogeneity tau²=0.00 (p=0.04, MD=-4.06, 95% CI: -7.89, -0.24) was significantly different (Appendix 4).

A-8) In the comparative approach of FOBT vs. FIT at hemoglobin cut-off level of 50 ng/ml, three studies were included in which detection rates of the two tests were not significantly different for colorectal cancer (Appendix 4).

A-9) In the comparative approach of FOBT vs. FIT at hemoglobin cut-off level of 50 ng/ml, three studies were included in which the detection rates of the two tests were not significantly different for advanced adenoma (Appendix 4).

A-10) In the comparative approach of FOBT vs. FIT at hemoglobin cut-off level of 100 ng/ml, two studies were included in which the specificity of the two tests was not significantly different for colorectal cancer (Appendix 4).

A-11) In the comparative approach of FOBT vs. FIT at hemoglobin cut-off level of 100 ng/ml, two studies were included in which the specificity of the two tests was not significantly different for advanced adenoma (Appendix 4).

A-12) In the comparative approach of FOBT vs. FIT at hemoglobin cut-off level of 100 ng/ml, two studies were included in which the positive predictive value of the two tests was not significantly different for colorectal cancer (Appendix 4).

A-13) In the comparative approach of FOBT vs. FIT at hemoglobin cut-off level of 100 ng/ml, two studies were included in which the positive predictive value of the two tests was not significantly different for advanced adenoma (Appendix 4).

Discussion
Screening status for moderate-risk groups in Iran is unclear, and the trend of cancer occurrence is seen in a population of younger than 40 years of age. Therefore, this study focused on comparing the performance of diagnostic tests to detect CRC based on fecal FOBT and FIT in the first line of treatment. According to the included studies, FIT compared to FOBT, has a better performance in specificity, positivity rate, NN-scope and NN-screening. The results of the five large trials were meaningful in measuring the performance of FOBT and FIT tests (3,11,12,14,15). Interpretation of the test results according to the manufacturers’ instructions may have been affected by the results of each RCT. In some stud-
ies, dietary restriction did not apply, or only a sample of three stool samples were used for analysis, and this may give rise to false positive rates and may impose costs and mental burden on the patients. However, some of the references listed in the dietary restrictions lead to a reduction in the amount of positive FOBT test and increase the specificity of FOBT (15). According to the manufacturers’ instructions and the restrictions imposed by The Food and Drug Organization, dietary restrictions impact on the sensitivity and specificity had been reported in various studies, and so the comparison with other studies were difficult. Since the samples were collected in plastic containers, freezed and then defrosted again to be prepared for the analysis process, it was impossible to compare the performance of the two tests for multiple stool samples. In addition, according to some studies, when colonoscopy capacity was limited, FOBT could reduce the demand by limiting the range and extensive screening intervals. Moreover, when colonoscopy capacity was unlimited, the best strategy to screen people at the age of 45 to 80 years was FIT with cutoff 50Ng/cc, and 50 Ng/cc cut off level was recommended for colonoscopy follow- ups for all people with positive adenoma. However, when faced with limited capacity of colonoscopy, the optimal strategy was using FIT with cutoff of 200nm/cc at the range of 50 to 75 years; and consequently, by reducing the follow up rounds of colonoscopy, the demand will decrease (16). The low hemoglobin cut off levels provided a higher detection of advanced neoplasia and it also reduced the number of false-positives, and those that were not in a priority for performing colonoscopy. False-positive results may impose concerns and additional costs for accurate diagnosis. An increase in hemoglobin cut off levels leads to reduction in the detection rate and thus reduces sensitivity. Thereby, increasing the false negatives can progress to metastatic diseases, making it more difficult to be treated and leading to higher costs of the treatment. In one of the included studies, the detection rate of FIT in the cut off of 75Ng/cc was two times higher than FOBT, suggesting that this cut- off point is more favorable in assessing the performance rate. However, the general conclusion based on the meta-analysis was not different between the two tests in terms of detection rate or sensitivity. Detection rate and false positive rate can be considered as an indicator of sensitivity and specificity. Therefore, in our study, no differences were observed between the two indicators. Since most studies used the 75ng/cc cut-off to assess FIT versus FOBT, it can be stated that the results of our study have a good validity for generalization. FIT, compared to FOBT, was more sensitive in detecting CRC, advanced and non-advanced adenomas, considering that it also may contain false positive numbers. Therefore, FIT may be less specific than FOBT. This result was similar to that of the study conducted by Dancourt et al. in 2008. Based on their results, the performance of FIT (sensitivity, specificity, PPV, NPV and likelihood ratios)was better than FOBT (3). In the five included studies (3,11-14), the acceptability of FIT was more than FOBT. However, in our meta-analysis, we detected no difference between the two tests. FIT, compared to FOBT, had fewer false negative rates, and NN-scope (Number need to scope) and NN-screen (Number need to screen) were significantly different between the two tests, but in the final meta-analysis, no significant difference was found between NN-screen and NN-scope.

Conclusion
FIT detected more positive results compared to FOBT and showed fewer false negatives. Also, FIT was a more acceptable test for the participants because it was easy to take because of short sampling times and no food restrictions.

Acknowledgements
This article was derived from a thesis titled: "The Effectiveness of FOBT vs. FIT, which is appropriate: A Meta-Analysis on
colorectal cancer screening test" by Maryam Mousavinezhad supervised by Dr AliAkbari Sari and Dr RezaMajdzadeh, that was submitted to the Graduate Studies Office in partial fulfillment of the requirements for the degree of Master in Health Technology Assessment. This study was financially supported by the Vice Chancellor for Research at Tehran University of Medical Sciences (Contract no 240/1548).

Conflict of Interest
There was no conflict of interest.

References

M. Mousavinezhad, et al.

Appendix 1. Characteristics of the Included Trials

<table>
<thead>
<tr>
<th>Study</th>
<th>Country</th>
<th>Population</th>
<th>Range of Age</th>
<th>Year</th>
<th>Setting</th>
<th>Intervention</th>
<th>Comparator</th>
<th>Outcome</th>
<th>(FIT vs. FOBT)</th>
<th>Jaded Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wilschut LH et al (11)</td>
<td>Netherlands</td>
<td>10011</td>
<td>50-75 year</td>
<td>2009</td>
<td>At home</td>
<td>FIT</td>
<td>GFOBT</td>
<td>Specificity (97.6% (cut off 50ng/cc))</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Hughes K et al (12)</td>
<td>Australia</td>
<td>3358</td>
<td>50-75 year</td>
<td>2005</td>
<td>At home</td>
<td>FIT</td>
<td>GFOBT</td>
<td>Sensitivity Participation rate</td>
<td>No difference</td>
<td></td>
</tr>
<tr>
<td>Brenner H et al (13)</td>
<td>Germany</td>
<td>2414</td>
<td>50-75 year</td>
<td>2013</td>
<td>At home</td>
<td>FIT</td>
<td>GFOBT</td>
<td>Specificity PPV</td>
<td>No difference</td>
<td></td>
</tr>
<tr>
<td>Vanrossom LG et al (14)</td>
<td>Netherlands</td>
<td>20623</td>
<td>50-75 year</td>
<td>2008</td>
<td>At home</td>
<td>FIT</td>
<td>GFOBT</td>
<td>Intention to screen</td>
<td>Intention to screen FIT 0.4% VS. FOBT 0.2% P<0.01 (95% CI 0.3-0.5)</td>
<td>5</td>
</tr>
<tr>
<td>Dancourt V et al (3)</td>
<td>France</td>
<td>17215</td>
<td>50-75 year</td>
<td>2008</td>
<td>At home</td>
<td>FIT</td>
<td>GFOBT</td>
<td>Participation rate</td>
<td>No difference</td>
<td></td>
</tr>
</tbody>
</table>

1: Number need to scope
2: Number need to screen

Appendix 2. The Search Strategies

Search ((((((colorectal screening [Title/Abstract]) AND fecal occult blood [Title/Abstract]) OR fecal occult [Title/Abstract]) AND fecal immunochemical [Title/Abstract]) OR fecal occult blood test [Title/Abstract]) OR colorectal cancer screening [Title/Abstract]) OR FOBT [Title/Abstract]) OR fecal immunochemical test [Title/Abstract]) OR fecal occult blood test [MeSH Terms]
Search fecal occult blood test [MeSH Terms]
Search fecal immunochemical test [MeSH Terms]
Search ((("Colorectal Neoplasms" [Mesh] OR "Colorectal Neoplasms, Hereditary Nonpolyposis" [Mesh] OR "Lynch Syndrome II" [Mesh]) OR colorectal cancer) OR colorectal neoplasia) OR colorectal neoplasms

Appendix 3. Excluded Articles in the Final Step

<table>
<thead>
<tr>
<th>Reason for Exclusion</th>
<th>Address of the Articles in References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Descriptive study</td>
<td>16-17-18-19</td>
</tr>
<tr>
<td>Review article</td>
<td>31-32-33-34-35</td>
</tr>
<tr>
<td>Mismatch with PICOD</td>
<td>42-43-44-45-46-47-48</td>
</tr>
</tbody>
</table>
A) Appendix 4. Meta-analysis of Common Indicators in Final Studies with the RevMan Software

<table>
<thead>
<tr>
<th>Study</th>
<th>Strategy</th>
<th>Validity Index</th>
<th>MD 95% CI</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wilschut LH Vanrossom LG</td>
<td>FOBT, FIT 50ng/dl</td>
<td>CRC specificity</td>
<td>1.16[-96.10,98.42]</td>
<td>0.98</td>
</tr>
<tr>
<td>Wilschut Vanrossom LG</td>
<td>FOBT, FIT 50ng/dl</td>
<td>Advanced adenoma specificity</td>
<td>2.11[-95.57,99.79]</td>
<td>0.97</td>
</tr>
<tr>
<td>Wilschut LH Vanrossom LG Dancourt V</td>
<td>FOBT, FIT 50ng/dl</td>
<td>CRC PPV</td>
<td>0.71[-5.25,6.66]</td>
<td>0.82</td>
</tr>
<tr>
<td>Wilschut LH Vanrossom LG Dancourt V</td>
<td>FOBT, FIT 50ng/dl</td>
<td>Advanced adenoma PPV</td>
<td>-5.48[-32.12,21.15]</td>
<td>0.69</td>
</tr>
<tr>
<td>Vanrossom LG Dancourt V</td>
<td>FOBT, FIT 50ng/dl</td>
<td>Non-Advanced adenoma PPV</td>
<td>-1.32[-17.32,14.69]</td>
<td>0.87</td>
</tr>
<tr>
<td>Hughes k Vanrossom LG</td>
<td>FOBT, FIT 50ng/dl</td>
<td>Participation rate</td>
<td>-9.74[-50.92,31.45]</td>
<td>0.64</td>
</tr>
<tr>
<td>Hughes k Vanrossom LG</td>
<td>FOBT, FIT 50ng/dl</td>
<td>Positivity rate</td>
<td>-4.06[-7.89,-0.24]</td>
<td>0.04</td>
</tr>
<tr>
<td>Vanrossom LG Wilschut LH</td>
<td>FOBT, FIT 50ng/dl</td>
<td>CRC detection rate</td>
<td>-0.99[-2.08,0.09]</td>
<td>0.07</td>
</tr>
<tr>
<td>Vanrossom LG Wilschut LH</td>
<td>FOBT, FIT 50ng/dl</td>
<td>Advanced adenoma detection rate</td>
<td>-1.00[-2.39,0.39]</td>
<td>0.16</td>
</tr>
<tr>
<td>Brenner H Wilschut LH</td>
<td>FOBT, FIT 100ng/dl</td>
<td>CRC specificity</td>
<td>1.15[-95.24, 96.55]</td>
<td>0.99</td>
</tr>
<tr>
<td>Brenner H Wilschut LH</td>
<td>FOBT, FIT 100ng/dl</td>
<td>Advanced adenoma specificity</td>
<td>-0.67[-97.90,96.55]</td>
<td>0.99</td>
</tr>
<tr>
<td>Brenner H Wilschut LH</td>
<td>FOBT, FIT 100ng/dl</td>
<td>CRC PPV</td>
<td>-16.77[-61.12, 27.58]</td>
<td>0.46</td>
</tr>
<tr>
<td>Brenner H Wilschut LH</td>
<td>FOBT, FIT 100ng/dl</td>
<td>Advanced adenoma PPV</td>
<td>-24.53[-67.43, 18.37]</td>
<td>0.26</td>
</tr>
</tbody>
</table>

FOBT vs. FIT 50: CRC Specificity

Summary Data

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>FOBT SD</th>
<th>Total</th>
<th>Mean</th>
<th>SD</th>
<th>Total</th>
<th>Weight</th>
<th>Mean difference IV, Random, 95% CI</th>
<th>Mean difference IV, Random, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neo O van rossum</td>
<td>97.8 3.447.7175 4798 97.8 3.464.3793 4843</td>
<td>49.7%</td>
<td>0.00 [-137.99, 137.99]</td>
<td>0.00 [-137.99, 137.99]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>15097</td>
<td>15165 100.0%</td>
<td>1.16 [-96.10, 98.42]</td>
<td>1.16 [-96.10, 98.42]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Test for heterogeneity:

- Tau² = 0.00, Chi² = 0.00, df = 1 (P = 0.98), I² = 0%
- Test for overall effect: Z = 0.02 (P = 0.98)

FOBT vs. FIT 50: Advanced Adenoma Specificity

Summary Data

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>FOBT SD</th>
<th>Total</th>
<th>Mean</th>
<th>SD</th>
<th>Total</th>
<th>Weight</th>
<th>Mean difference IV, Random, 95% CI</th>
<th>Mean difference IV, Random, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neo O van rossum</td>
<td>98.5 3.479.51 4796 95.5 3.390.331 4843</td>
<td>50.7%</td>
<td>3.00 [-134.16, 140.16]</td>
<td>3.00 [-134.16, 140.16]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>15097</td>
<td>15165 100.0%</td>
<td>2.11 [-95.57, 99.79]</td>
<td>2.11 [-95.57, 99.79]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Test for heterogeneity:

- Tau² = 0.00, Chi² = 0.00, df = 1 (P = 0.98), I² = 0%
- Test for overall effect: Z = 0.04 (P = 0.97)
The effectiveness of FOBT vs. FIT

FOBT vs. FIT 50: CRC PPV

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>FOBT Mean</th>
<th>SD</th>
<th>Total</th>
<th>Mean</th>
<th>SD</th>
<th>Total</th>
<th>Weight</th>
<th>Mean Difference</th>
<th>IV, Random, 95% CI</th>
<th>Mean Difference</th>
<th>IV, Random, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>I hol</td>
<td>10</td>
<td>353.2497</td>
<td>4796</td>
<td>7</td>
<td>248.4841</td>
<td>4843</td>
<td>23.8%</td>
<td>3.00 [-0.20, 15.20]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leo G van rossum</td>
<td>10.7</td>
<td>554.0166</td>
<td>10301</td>
<td>8.6</td>
<td>445.7397</td>
<td>10322</td>
<td>18.8%</td>
<td>2.10 [-11.63, 15.83]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vincent</td>
<td>5.2</td>
<td>348.0793</td>
<td>17215</td>
<td>5.9</td>
<td>394.9362</td>
<td>17215</td>
<td>57.4%</td>
<td>-0.70 [-8.56, 7.16]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>33212</td>
<td></td>
<td></td>
<td>33380</td>
<td></td>
<td></td>
<td>100.0%</td>
<td>0.71 [6.25, 6.66]</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Heterogeneity: Tau^2 = 0.00; Chi^2 = 3.30, df = 2 (P = 0.08); I^2 = 0%
Test for overall effect: Z = 0.23 (P = 0.82)

FOBT vs. FIT 50: Advanced Adenoma PPV

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>FOBT Mean</th>
<th>SD</th>
<th>Total</th>
<th>Mean</th>
<th>SD</th>
<th>Total</th>
<th>Weight</th>
<th>Mean Difference</th>
<th>IV, Random, 95% CI</th>
<th>Mean Difference</th>
<th>IV, Random, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>I hol</td>
<td>45</td>
<td>1,589.6229</td>
<td>4796</td>
<td>42</td>
<td>1,490.6046</td>
<td>4843</td>
<td>18.7%</td>
<td>3.00 [-58.54, 64.54]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leo G van rossum</td>
<td>55.5</td>
<td>2,863.2924</td>
<td>10301</td>
<td>51.8</td>
<td>2,684.8045</td>
<td>10322</td>
<td>12.4%</td>
<td>3.50 [-72.29, 79.28]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vincent</td>
<td>17.6</td>
<td>1,171.4206</td>
<td>17215</td>
<td>26.9</td>
<td>1,000.6411</td>
<td>17215</td>
<td>68.9%</td>
<td>-0.45 [-41.49, 22.09]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>33212</td>
<td></td>
<td></td>
<td>32386</td>
<td></td>
<td></td>
<td>100.0%</td>
<td>-5.46 [-32.12, 21.15]</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Heterogeneity: Tau^2 = 0.00; Chi^2 = 1.08, df = 2 (P = 0.04); I^2 = 0%
Test for overall effect: Z = 0.40 (P = 0.69)

FOBT vs. FIT 50: Non advanced Adenoma PPV

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>FOBT Mean</th>
<th>SD</th>
<th>Total</th>
<th>Mean</th>
<th>SD</th>
<th>Total</th>
<th>Weight</th>
<th>Mean Difference</th>
<th>IV, Random, 95% CI</th>
<th>Mean Difference</th>
<th>IV, Random, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leo G van rossum</td>
<td>69.9</td>
<td>3,619.243</td>
<td>10301</td>
<td>71.8</td>
<td>3,721.4085</td>
<td>10322</td>
<td>2.6%</td>
<td>-1.90 [-102.09, 98.29]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vincent</td>
<td>10.8</td>
<td>722.934</td>
<td>17215</td>
<td>12.1</td>
<td>809.9533</td>
<td>17215</td>
<td>97.4%</td>
<td>-1.30 [-17.52, 14.92]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>27516</td>
<td></td>
<td></td>
<td>27537</td>
<td></td>
<td></td>
<td>100.0%</td>
<td>-1.32 [-17.32, 14.69]</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Heterogeneity: Tau^2 = 0.00; Chi^2 = 0.55, df = 1 (P = 0.99); I^2 = 0%
Test for overall effect: Z = 0.16 (P = 0.87)

FOBT vs. FIT 50: Participation Rate

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>FOBT Mean</th>
<th>SD</th>
<th>Total</th>
<th>Mean</th>
<th>SD</th>
<th>Total</th>
<th>Weight</th>
<th>Mean Difference</th>
<th>IV, Random, 95% CI</th>
<th>Mean Difference</th>
<th>IV, Random, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Karen Hughes</td>
<td>30.2</td>
<td>471.5534</td>
<td>939</td>
<td>38.7</td>
<td>958.2388</td>
<td>2407</td>
<td>70.5%</td>
<td>-8.50 [-57.55, 40.55]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leo G van rossum</td>
<td>49.9</td>
<td>2,428.3619</td>
<td>10301</td>
<td>59.6</td>
<td>3,089.08</td>
<td>10322</td>
<td>29.5%</td>
<td>-12.70 [-88.53, 63.13]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>11240</td>
<td></td>
<td></td>
<td>12729</td>
<td></td>
<td></td>
<td>100.0%</td>
<td>-9.74 [-50.92, 31.45]</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Heterogeneity: Tau^2 = 0.00; Chi^2 = 0.01, df = 1 (P = 0.93); I^2 = 0%
Test for overall effect: Z = 0.46 (P = 0.64)

FOBT vs. FIT 50: Positivity Rate

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>FOBT Mean</th>
<th>SD</th>
<th>Total</th>
<th>Mean</th>
<th>SD</th>
<th>Total</th>
<th>Weight</th>
<th>Mean Difference</th>
<th>IV, Random, 95% CI</th>
<th>Mean Difference</th>
<th>IV, Random, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Karen Hughes</td>
<td>3.9</td>
<td>60.896</td>
<td>939</td>
<td>9.5</td>
<td>237.6813</td>
<td>2407</td>
<td>13.9%</td>
<td>-5.60 [-15.66, 4.46]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I hol</td>
<td>2.6</td>
<td>98.9099</td>
<td>4796</td>
<td>8.1</td>
<td>287.5316</td>
<td>4843</td>
<td>19.9%</td>
<td>-5.30 [-13.87, 3.27]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leo G van rossum</td>
<td>2.4</td>
<td>124.2659</td>
<td>10301</td>
<td>5.5</td>
<td>285.0661</td>
<td>10322</td>
<td>40.6%</td>
<td>-3.10 [-9.10, 2.90]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vincent</td>
<td>3.1</td>
<td>207.5088</td>
<td>17215</td>
<td>6.9</td>
<td>481.8745</td>
<td>17215</td>
<td>25.6%</td>
<td>-3.80 [-11.36, 3.76]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>33251</td>
<td></td>
<td></td>
<td>34787</td>
<td></td>
<td></td>
<td>100.0%</td>
<td>-4.06 [-7.86, -0.24]</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Heterogeneity: Tau^2 = 0.00; Chi^2 = 0.27, df = 3 (P = 0.97); I^2 = 0%
Test for overall effect: Z = 2.08 (P = 0.04)
FOBT vs. FIT 50: CRC Detection Rate

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>FOBT Mean</th>
<th>FOBT SD</th>
<th>FOBT Total</th>
<th>FOBT Mean</th>
<th>FOBT SD</th>
<th>FOBT Total</th>
<th>Weight</th>
<th>Mean Difference IV, Random, 95% CI</th>
<th>Mean Difference IV, Random, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>I hol</td>
<td>0.3</td>
<td>10.5676</td>
<td>4789</td>
<td>1.2</td>
<td>42.5972</td>
<td>4843</td>
<td>76.8%</td>
<td>-0.90 [-2.14, 0.34]</td>
<td></td>
</tr>
<tr>
<td>Leo G van rossum</td>
<td>0.8</td>
<td>41.422</td>
<td>10301</td>
<td>2.1</td>
<td>108.6434</td>
<td>10322</td>
<td>23.2%</td>
<td>-1.30 [-3.55, 0.95]</td>
<td></td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15070</td>
<td>15165</td>
<td>100.0%</td>
<td>-0.99 [-2.08, 0.09]</td>
<td></td>
</tr>
</tbody>
</table>

Heterogeneity: Tau² = 0.00; Chi² = 0.09; df = 1 (P = 0.76); I² = 0%
Test for overall effect: Z = 1.80 (P = 0.07)

FOBT vs. FIT 50: Advanced Adenoma Detection Rate

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>FOBT Mean</th>
<th>FOBT SD</th>
<th>FOBT Total</th>
<th>FOBT Mean</th>
<th>FOBT SD</th>
<th>FOBT Total</th>
<th>Weight</th>
<th>Mean Difference IV, Random, 95% CI</th>
<th>Mean Difference IV, Random, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>I hol</td>
<td>1.2</td>
<td>42.39</td>
<td>4786</td>
<td>3.2</td>
<td>113.5927</td>
<td>4843</td>
<td>16.6%</td>
<td>-2.00 [-5.42, 1.42]</td>
<td></td>
</tr>
<tr>
<td>Leo G van rossum</td>
<td>0.6</td>
<td>31.0865</td>
<td>10301</td>
<td>1.4</td>
<td>72.5623</td>
<td>10322</td>
<td>83.4%</td>
<td>-0.80 [-2.32, 0.72]</td>
<td></td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15097</td>
<td>15165</td>
<td>100.0%</td>
<td>-1.00 [-2.39, 0.39]</td>
<td></td>
</tr>
</tbody>
</table>

Heterogeneity: Tau² = 0.00; Chi² = 0.40; df = 1 (P = 0.53); I² = 0%
Test for overall effect: Z = 1.41 (P = 0.16)

FOBT vs. FIT 100: CRC Specificity

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>FOBT Mean</th>
<th>FOBT SD</th>
<th>FOBT Total</th>
<th>FOBT Mean</th>
<th>FOBT SD</th>
<th>FOBT Total</th>
<th>Weight</th>
<th>Mean Difference IV, Random, 95% CI</th>
<th>Mean Difference IV, Random, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Herman brenner</td>
<td>95.2</td>
<td>2.352</td>
<td>2235</td>
<td>95.5</td>
<td>2.302</td>
<td>2235</td>
<td>49.9%</td>
<td>0.30 [-136.78, 137.38]</td>
<td></td>
</tr>
<tr>
<td>I hol</td>
<td>97.6</td>
<td>3.447</td>
<td>4796</td>
<td>95</td>
<td>3.372</td>
<td>4843</td>
<td>50.1%</td>
<td>2.60 [-133.57, 138.77]</td>
<td></td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7031</td>
<td>7078</td>
<td>100.0%</td>
<td>1.15 [86.24, 97.55]</td>
<td></td>
</tr>
</tbody>
</table>

Heterogeneity: Tau² = 0.00; Chi² = 0.00; df = 1 (P = 0.68); I² = 0%
Test for overall effect: Z = 0.02 (P = 0.98)

FOBT vs. FIT 100: Advanced Adenoma Specificity

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>FOBT Mean</th>
<th>FOBT SD</th>
<th>FOBT Total</th>
<th>FOBT Mean</th>
<th>FOBT SD</th>
<th>FOBT Total</th>
<th>Weight</th>
<th>Mean Difference IV, Random, 95% CI</th>
<th>Mean Difference IV, Random, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Herman brenner</td>
<td>95.4</td>
<td>2.299</td>
<td>2235</td>
<td>97.4</td>
<td>2.348</td>
<td>2235</td>
<td>50.9%</td>
<td>3.00 [-138.26, 140.26]</td>
<td></td>
</tr>
<tr>
<td>I hol</td>
<td>96.5</td>
<td>3.479</td>
<td>4796</td>
<td>97.8</td>
<td>3.471</td>
<td>4843</td>
<td>49.1%</td>
<td>0.70 [-138.07, 139.47]</td>
<td></td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7031</td>
<td>7078</td>
<td>100.0%</td>
<td>-0.67 [-97.90, 96.55]</td>
<td></td>
</tr>
</tbody>
</table>

Heterogeneity: Tau² = 0.00; Chi² = 0.00; df = 1 (P = 0.99); I² = 0%
Test for overall effect: Z = 0.01 (P = 0.99)

FOBT vs. FIT 100: CRC PPV

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>FOBT Mean</th>
<th>FOBT SD</th>
<th>FOBT Total</th>
<th>FOBT Mean</th>
<th>FOBT SD</th>
<th>FOBT Total</th>
<th>Weight</th>
<th>Mean Difference IV, Random, 95% CI</th>
<th>Mean Difference IV, Random, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Herman brenner</td>
<td>4.5</td>
<td>108.4845</td>
<td>2235</td>
<td>51.8</td>
<td>1.248</td>
<td>2235</td>
<td>35.5%</td>
<td>-47.30 [-99.27, 4.67]</td>
<td></td>
</tr>
<tr>
<td>I hol</td>
<td>10</td>
<td>353.2497</td>
<td>4796</td>
<td>10</td>
<td>354.9733</td>
<td>4843</td>
<td>64.5%</td>
<td>0.00 [-14.14, 14.14]</td>
<td></td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7031</td>
<td>7078</td>
<td>100.0%</td>
<td>-18.77 [-61.12, 27.58]</td>
<td></td>
</tr>
</tbody>
</table>

Heterogeneity: Tau² = 741.12; Chi² = 2.96; df = 1 (P = 0.09); I² = 66%
Test for overall effect: Z = 0.74 (P = 0.46)
The effectiveness of FOBT vs. FIT

FOBT vs. FIT 100: Advanced Adenoma PPV

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>FOBT Mean (SD)</th>
<th>Total (N)</th>
<th>FIT Mean (SD)</th>
<th>Total (N)</th>
<th>Mean Difference (IV, Random, 95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Herman brenner</td>
<td>4.5 (108.4845)</td>
<td>2235</td>
<td>51.8 (1.248.7775)</td>
<td>2235</td>
<td>-47.30 (-99.27, 4.67)</td>
</tr>
<tr>
<td>Hol</td>
<td>10 (353.2497)</td>
<td>4766</td>
<td>10 (354.9773)</td>
<td>4843</td>
<td>0.00 (14.14, 14.14)</td>
</tr>
</tbody>
</table>

Total (95% CI): 7031 vs. 7078, 100.0% -16.77 [-61.12, 27.58]

Heterogeneity: Tau² = 741.12; Chi² = 2.96, df = 1 (P = 0.09); I² = 66%

Test for overall effect: Z = 0.74 (P = 0.46)