Digital games in medical education: Key terms, concepts, and definitions

Shoaleh Bigdeli1*, David Kaufman2

Received: 04 Mar 2017 Published: 2 Sep 2017

Abstract
Background: Game-based education is fast becoming a key instrument in medical education.
Method: In this study, papers related to games were filtered and limited to full-text peer-reviewed published in English.
Results: To the best of researchers’ knowledge, the concepts used in the literature are varied and distinct, and the literature is not conclusive on the definition of educational games for medical education.
Conclusion: This paper attempts to classify terms, concepts and definitions common to gamification in medical education.

Keywords: Game, Simulation Game, Medical Education

Introduction
Games are as old as human beings; however, the history of educational games was first detected at the time when Socrates and Plato used a kind of verbal play in their “dialogues”. In the 19th century, Froebel integrated “learning,” “game” and “play”; and, in the 1990s, digital games were developed further and became dramatically widespread among the youth, resulting in a cohort of incoming students accustomed to digital game plays (1).

A considerable amount of literature has been published on digital games, and a number of researchers have sought to define the key concepts and essential elements (2,3). There are five attributes encapsulating the concept of educational games: player or players, conflicts, rules, predetermined goal of the game, artificial nature of games (4), and since the focus of this review study is on educational games, the pedagogical nature of the game provides a sixth attribute.

Integration of digital educational games into existing medical education context is a challenge and a current focus of attention in studies for teachers, learners and clinicians in settings of medical education. Some studies have emphasized the positive influence of games over traditional teaching methods for educational purposes (5,6). On the other hand, several authors have claimed that students with diverse learning styles (e.g. visual and aural, read/write, and kinesthetic) can benefit from educational games (7) provided that individual personal characteristics be considered in the instructional design of the games.

In medical education, digital games have been presented in different digital formats such as simulations, virtual environments, social and cooperative plays and alternative reality games (5-10); however, simulations are different from games in nature, as are virtual environments. Therefore, in this study, we included simulation games and the virtual environments containing a digital game. As medical professions are practice-based, a majority of game-based programs focus on procedural skills (e.g. surgery, laparoscopy) that can improve patient safety, help limit burnout and fulfill the promise of competency-based education (11). The current technology of digital games has

↑What is “already known” in this topic:
• Educational games in medical education are growing fast,
• The literature is not conclusive on the definition of educational games in medical education.

→What this article adds:
• The pedagogical nature of the game is a sixth attribute encapsulating the concept of educational games
• Characteristics of the learners must be considered in medical education game design
• Educational games in medical education can be classified according to cognitive, psychomotor, and affective learning domains.
Digital games in medical education

the potential to provide virtual experiences in a more cost-effective manner, and learners can be exposed to diverse case scenarios enabling them to create and evaluate both positive and negative outcomes of clinical procedures (12). In addition, this technology provides a safe environment (13, 14) for learners to gain skills and self-confidence without being stressed about making the real-world judgments, as well as ensuring patients’ safety. Unlike real-world practice which might endanger patients’ safety, the educational game technology provides a safe environment in which learners can practice and gain skills and experiences self-confidently without threats of the real-world.

Although extensive research has been carried out on the application of digital games in medical education, to the best of researchers’ knowledge, there are few studies which adequately cover the terms, and concepts, and to the best of researchers’ knowledge none of them provides a sound classification which is based on cognitive, psychomotor and attitude domains of learning.

This review study provides an overview of terms, concepts, and definitions used as efficient educational elements of digital games in medical education. Elaborating these concepts in all disciplines of medical education is beyond the scope of this paper, and we will only focus on terms and concepts used in medicine, nursing, pharmacy, and dentistry.

Methods

This review study was conducted from September to December 2015 via SFU library, CINAHL Complete, Cochrane Library (Cochrane CENTRAL and Cochrane Reviews), EBSCOhost, Elsevier Science Direct, ERIC, PsycINFO, PsycARTICLES, PubMed, PubMed Central (PMC), PubMed/MEDLINE, with Search terms (AND, OR, NOT) and keywords: game, gamified, gamification, computer game, digital game, electronic game, video game, systematic review, meta-analysis, meta-analysis, health professions, medical, nursing, pharmacy, dentistry, education in peer-reviewed journal articles to find all digital games related to medical education disciplines of medicine, nursing, pharmacy and dentistry.

Inclusion and exclusion criteria

Papers related to games were filtered and limited to full-text peer-reviewed papers published in English in 2010-2015. The papers were included if addressing digital games in medical education (disciplines of medicine, nursing, pharmacy and dentistry), and if students were participants of the study. The aforementioned disciplines were selected to narrow the scope of the paper and to explore the topic in these fields more precisely.

The articles were excluded if the topics were not related to medical education, were not available in full text, the participants were patients, teachers and/or staff only, the participants composed of residency students and/or medical professionals (e.g., surgeons, specialists) only.

Moreover, studies addressing blogs, discussion boards, podcasts, videos and video-conferencing, and non-digital games were excluded. Finally, studies on apps for smartphones, tablets, portable music players, and topics of patient management, patient education, teacher, and staff education were excluded too.

Titles and abstracts, resulting from the initial online search with selected MeSH and free text terms related to digital educational games, were screened for relevance and eligibility for full-text retrieval. Additional articles were searched through citation by manual checking of the reference sections of the sourced articles. The full texts recognized eligible were also screened, and the researchers resolved their disagreements by discussion if they were any. Finally, the selected relevant articles retrieved were those that focused on the use of specific educational games for learning in four disciplines of medicine, nursing, pharmacy, and dentistry.

Results

Postmodern generation of game players

According to the findings of the present study, diverse terminology is used to define current generation of medical education students as native speakers of digital educational games. They are mainly divided into seven categories defining highly active participants who spend countless hours on playing digital games individually or in groups. They seek enjoyment and power to use technology limitlessly (15) and in a timeless manner. This multitask generation demands something more than “textbooks” and non-interactive “lectures” for learning (16) (Table1).

Digital games and medical education

A digital educational game for specific purposes of medical education is an electronic game involving interaction of medical practitioners and students with a user interface in an offline and/or online mode reference. Popular electronic devices used by medical professionals include but not limited to desktop computers, laptops, tablets, ipads, ipods, and smartphones. The findings of the present study showed that there is no clear distinction between “game”, “simulation”, and “simulated game”, they are used interchangeably in the literature, and there is a relative overlap in definitions. Games and simulations bear common elements of rules and regulations, mechanics, engagement, collaboration and interactivity with highthinking and mental engagement. However, in practice, games enjoy elements of competition, fun, and entertainment while simulations are more serious and similar to real life situations and usually lack these features. Current terms and concepts used are presented in (Table2).
Moreover, in dentistry, simulations, robotics and haptic technology focusing on psychomotor skills (8) are of major concern, and it appears that simulation is more serious and similar to real life experiences, and elements of fun and entertainment are of less importance.

There are at least 16 categories of digital games, available for educational and commercial purposes, some of which can be used for medical professions education (Table 3). Minesweeper as a puzzle game, Grey’s anatomy as a TV show format and scratch offs are some of the examples. Digital games of medical professions improving cog-
Digital games in medical education

Table 2

<table>
<thead>
<tr>
<th>Types of Digital Games</th>
<th>Citations</th>
<th>Game Name and Designer (Examples retrieved from Wikipedia.org)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Board games</td>
<td>[13, 34]</td>
<td>Ticket to ride (Alan R. Moon)</td>
</tr>
<tr>
<td>Simulation</td>
<td>[13, 34]</td>
<td>The Sims Online (William Ralph Wright)</td>
</tr>
<tr>
<td>Role-playing</td>
<td>[13, 22]</td>
<td>Final Fantasy XI (Hiromichi Tanaka)</td>
</tr>
<tr>
<td>Frame games</td>
<td>[36]</td>
<td>Geriatric Medication Game, Saint Louis College of Pharmacy</td>
</tr>
<tr>
<td>Puzzles</td>
<td>[22, 36]</td>
<td>Portal (Valve Corporation)</td>
</tr>
<tr>
<td>Free to play games</td>
<td></td>
<td>Minesweeper (Curt Johnson)</td>
</tr>
</tbody>
</table>

Table 4. Most of these games improve knowledge acquisition and cognitive abilities and a few of them target attitudes. It seems that targeting educational objectives at cognitive level is more achievable than psychomotor and affective educational levels. Moreover, characteristics of undergraduate students (e.g. medical) and their educational needs are different from postgraduate students (e.g. medical residents), graduates and specialists. In this regard, application of games designed for a specific target group may not deem feasible for another audience; for example, abcedeSIM, which originally was developed for medical residents was counterproductive for novice learners (28)). Therefore, it could be inferred that characteristics of each target group should be considered separately in designing an educational game.
Conclusion

This paper was an attempt to provide an informative overview of the elements appearing in studies related to educational games. It was a comprehensive review of the existing literature on educational games with a specific focus on medical education, addressing terminology common to digital educational games, defining current millennial learners, different types of games, and classification of games on the basis of the cognitive, psychomotor and affective learning domains. Also, to the best of our knowledge, it is the first study which summarizes the major terminology of game players and common terms related to digital educational games of medical education in a comprehensive and concise manner.

Although the study used a comprehensive search strategy, it had a limited scope of review. The findings apply to...
Digital games in medical education

some formats sometimes labeled games, role playing, simulations and serious games due to their blurred margins which make the discrimination unlikely. Even though rigorous attempts were made to ensure that this review covered all articles on educational digital games in the disciplines of medicine, nursing, dentistry, and pharmacy, some papers might not have been identified.

Finally, we would suggest that a collaboration of a team consisting of curriculum designers, educational psychologists, cognitive psychologists, educational philosophers and technical game designers for developing educational games in health professions education is strongly recommended.

<table>
<thead>
<tr>
<th>Table 4</th>
<th>Medical</th>
<th>Other health care professionals (e.g. Nursing and Paramedics) and Medical Students</th>
<th>Knowledge</th>
<th>Positive results in game interface, feedback, difficulty level, educational value, user engagement, and terminology used in the game</th>
<th>Study participants professionals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virtual Emergency TeleMedicine (simulation-based game)</td>
<td>Paramedical</td>
<td>Practical knowledge</td>
<td>Educational and training tool Helps develop critical thinking and Practical knowledge</td>
<td>[39]</td>
<td></td>
</tr>
<tr>
<td>Pulse!!</td>
<td>Medical</td>
<td>Experiential learning</td>
<td>Enhancement of knowledge, psychomotor skills and decision-making</td>
<td>[21]</td>
<td></td>
</tr>
<tr>
<td>GeriatriX</td>
<td>Medical</td>
<td>Knowledge</td>
<td>Improved performance</td>
<td>Confidence increase</td>
<td>[24]</td>
</tr>
<tr>
<td>Ward (simulation game)</td>
<td>Nursing</td>
<td>Knowledge Practice</td>
<td>The potential to improve competence</td>
<td>No result of the efficacy is reported</td>
<td>[38]</td>
</tr>
<tr>
<td>Nursopardy (game)</td>
<td>Nursing</td>
<td>Knowledge</td>
<td>A positive change in students attitudes toward elderly adults</td>
<td>A considerable improvement in students self-perceived knowledge of important geriatric topics</td>
<td>[40]</td>
</tr>
<tr>
<td>Uro-Island</td>
<td>Medicine</td>
<td>Cognitive Attitude</td>
<td>No result of the efficacy is reported</td>
<td>Positive learning experience</td>
<td>[7]</td>
</tr>
<tr>
<td>InsuOnline</td>
<td>Primary Care Physicians Nursing</td>
<td>Knowledge Attitude</td>
<td>A great success in focusing students’ sights and skills Knowledge improvement Reinforcement of material learned Increased learner confidence to take part in standard- ized exams</td>
<td>[41]</td>
<td></td>
</tr>
<tr>
<td>Medicina</td>
<td>Nursing</td>
<td>Knowledge</td>
<td>Positive learning effect</td>
<td>Strong collaboration Willingness to learn</td>
<td>[35]</td>
</tr>
<tr>
<td>eMedOffice</td>
<td>Medical</td>
<td>Knowledge Attitude Practice</td>
<td>Positive learning effect</td>
<td>Strong collaboration Willingness to learn Fostered competitive cooperation Enhance problem-solving competence An enjoyable learning atmosphere</td>
<td>[43]</td>
</tr>
<tr>
<td>Spaced education (SE)</td>
<td>Medical</td>
<td>Knowledge</td>
<td>An effective and well accepted means of teaching core content</td>
<td>A reliable and valid method to assess student knowledge Generates deep learning increases knowledge acquisition and retention</td>
<td>[23]</td>
</tr>
<tr>
<td>Path to Success and The Path is Right</td>
<td>Medical</td>
<td>Knowledge</td>
<td>Enhanced academic performance</td>
<td></td>
<td>[15]</td>
</tr>
</tbody>
</table>

http://mjiri.iums.ac.ir
Med J Islam Repub Iran. 2017 (2 Sep); 31:52.
Acknowledgements
Funding of this paper is provided by AGE-WELL National Centre of Excellence (Project WP4.2)

Conflict of Interests
The authors declare that they have no competing interests.

References