Trends in health burden of untreated water and insanitary environments in Iran, 1990-2010: Findings from the global burden of disease study 2010

Afshin Ebrahimi1, Mokhtar Mahdavi2, Anoosheh Ghasemian3, Parinaz Poursafa4
Farshad Sharifi5, Rasool Mohammadi6, Masoumeh Nejatifar7, Mohammad Mehdi Amin8
Hamid Asayesh9, Saeid Safiri10, Hossain Ansari11, Mostafa Qorbani12

Abstract

Background: Water, sanitation and hygiene have a very important role in public health. Poor sanitation is the cause of water contamination, which causes many types of diseases. The aim of this paper was to present the attributable death and disability adjusted life year (DALYs) of untreated water and insanitary environments from 1990 to 2010 in Iran.

Methods: In the Global Burden of Disease 2010 study, using the comparative risk assessment, the proportion of death and DALYs attributable to untreated water source and insanitary environment has been calculated in 1990 to 2010. The certain outcomes were intestinal infectious diseases for both untreated water source and insanitary environments. Estimated attributable deaths and DALYs were reported with 95% uncertainty interval (UI).

Results: DALY number for untreated water source and insanitary environments was 5838 (95% UI: 198-14837) in 1990, which decreased to 326 (95% UI: 9-863) in 2010 and the percent of decrease was 94.42%. In addition, DALY rate was 5667 (95% UI: 192-14402) DALY per 100,000 in 1990, which decreased to 453 (95% UI: 13-1199) DALY per 100,000 in 2010 and the percent of the reduction was 92.01%. The greatest percentage of decrease in the attributed number of deaths was also found in the late neonatal age group (95.45%).

Conclusion: A significant decrease has occurred in a number of DALYs and deaths between 1990 and 2010, which was attributed to the development of new water systems and environmental sanitations in Iran.

Keywords: Water, Insanitary Environments, Disability Adjusted Life Year, Burden of Diseases, Iran.
Introduction
Water is crucial for all aspects of life. Failure to ensure drinking-water safety may expose the community to the risk of outbreaks of intestinal and other infectious diseases. Water-borne diseases are caused by ingestion of contaminated water with pathogens contained in human or animal excreta. The disease burden of unsafe water, sanitation and hygiene (WSH) was first estimated at a global level in 1990 (1). More recently, the impact of WSH on the disease has been reassessed in a more comprehensive way (2), which estimated that almost one tenth of the global burden of disease could be attributed to water, sanitation and hygiene. Poor sanitation is the cause of water contamination, which causes many types of diseases. If sewage treatment is not appropriate, water related diseases would spread to the human environments.

Diseases associated with untreated water, poor sanitation and hygienic conditions comprise on average 6-7% of the annual mortality in developing countries (3). Some researches suggest that WSH interventions are effective and capable of delivering large health benefits to target populations (4,5). Prüss et al. estimated the disease burden from water, sanitation and hygiene (WSH) was first estimated at a global level in 1990 (1). More recently, the impact of WSH on the disease has been reassessed in a more comprehensive way (2), which estimated that almost one tenth of the global burden of disease could be attributed to water, sanitation and hygiene. Poor sanitation is the cause of water contamination, which causes many types of diseases. If sewage treatment is not appropriate, water related diseases would spread to the human environments.

Diseases associated with untreated water, poor sanitation and hygienic conditions comprise on average 6-7% of the annual mortality in developing countries (3). Some researches suggest that WSH interventions are effective and capable of delivering large health benefits to target populations (4,5). Prüss et al. estimated the disease burden from water, sanitation and hygiene (WSH) was first estimated at a global level in 1990 (1). More recently, the impact of WSH on the disease has been reassessed in a more comprehensive way (2), which estimated that almost one tenth of the global burden of disease could be attributed to water, sanitation and hygiene. Poor sanitation is the cause of water contamination, which causes many types of diseases. If sewage treatment is not appropriate, water related diseases would spread to the human environments.

Diseases associated with untreated water, poor sanitation and hygienic conditions comprise on average 6-7% of the annual mortality in developing countries (3). Some researches suggest that WSH interventions are effective and capable of delivering large health benefits to target populations (4,5). Prüss et al. estimated the disease burden from water, sanitation and hygiene (WSH) was first estimated at a global level in 1990 (1). More recently, the impact of WSH on the disease has been reassessed in a more comprehensive way (2), which estimated that almost one tenth of the global burden of disease could be attributed to water, sanitation and hygiene. Poor sanitation is the cause of water contamination, which causes many types of diseases. If sewage treatment is not appropriate, water related diseases would spread to the human environments.

Diseases associated with untreated water, poor sanitation and hygienic conditions comprise on average 6-7% of the annual mortality in developing countries (3). Some researches suggest that WSH interventions are effective and capable of delivering large health benefits to target populations (4,5). Prüss et al. estimated the disease burden from water, sanitation and hygiene (WSH) was first estimated at a global level in 1990 (1). More recently, the impact of WSH on the disease has been reassessed in a more comprehensive way (2), which estimated that almost one tenth of the global burden of disease could be attributed to water, sanitation and hygiene. Poor sanitation is the cause of water contamination, which causes many types of diseases. If sewage treatment is not appropriate, water related diseases would spread to the human environments.

Diseases associated with untreated water, poor sanitation and hygienic conditions comprise on average 6-7% of the annual mortality in developing countries (3). Some researches suggest that WSH interventions are effective and capable of delivering large health benefits to target populations (4,5). Prüss et al. estimated the disease burden from water, sanitation and hygiene (WSH) was first estimated at a global level in 1990 (1). More recently, the impact of WSH on the disease has been reassessed in a more comprehensive way (2), which estimated that almost one tenth of the global burden of disease could be attributed to water, sanitation and hygiene. Poor sanitation is the cause of water contamination, which causes many types of diseases. If sewage treatment is not appropriate, water related diseases would spread to the human environments.

Diseases associated with untreated water, poor sanitation and hygienic conditions comprise on average 6-7% of the annual mortality in developing countries (3). Some researches suggest that WSH interventions are effective and capable of delivering large health benefits to target populations (4,5). Prüss et al. estimated the disease burden from water, sanitation and hygiene (WSH) was first estimated at a global level in 1990 (1). More recently, the impact of WSH on the disease has been reassessed in a more comprehensive way (2), which estimated that almost one tenth of the global burden of disease could be attributed to water, sanitation and hygiene. Poor sanitation is the cause of water contamination, which causes many types of diseases. If sewage treatment is not appropriate, water related diseases would spread to the human environments.

Diseases associated with untreated water, poor sanitation and hygienic conditions comprise on average 6-7% of the annual mortality in developing countries (3). Some researches suggest that WSH interventions are effective and capable of delivering large health benefits to target populations (4,5). Prüss et al. estimated the disease burden from water, sanitation and hygiene (WSH) was first estimated at a global level in 1990 (1). More recently, the impact of WSH on the disease has been reassessed in a more comprehensive way (2), which estimated that almost one tenth of the global burden of disease could be attributed to water, sanitation and hygiene. Poor sanitation is the cause of water contamination, which causes many types of diseases. If sewage treatment is not appropriate, water related diseases would spread to the human environments.

Diseases associated with untreated water, poor sanitation and hygienic conditions comprise on average 6-7% of the annual mortality in developing countries (3). Some researches suggest that WSH interventions are effective and capable of delivering large health benefits to target populations (4,5). Prüss et al. estimated the disease burden from water, sanitation and hygiene (WSH) was first estimated at a global level in 1990 (1). More recently, the impact of WSH on the disease has been reassessed in a more comprehensive way (2), which estimated that almost one tenth of the global burden of disease could be attributed to water, sanitation and hygiene. Poor sanitation is the cause of water contamination, which causes many types of diseases. If sewage treatment is not appropriate, water related diseases would spread to the human environments.

Diseases associated with untreated water, poor sanitation and hygienic conditions comprise on average 6-7% of the annual mortality in developing countries (3). Some researches suggest that WSH interventions are effective and capable of delivering large health benefits to target populations (4,5). Prüss et al. estimated the disease burden from water, sanitation and hygiene (WSH) was first estimated at a global level in 1990 (1). More recently, the impact of WSH on the disease has been reassessed in a more comprehensive way (2), which estimated that almost one tenth of the global burden of disease could be attributed to water, sanitation and hygiene. Poor sanitation is the cause of water contamination, which causes many types of diseases. If sewage treatment is not appropriate, water related diseases would spread to the human environments.

Diseases associated with untreated water, poor sanitation and hygienic conditions comprise on average 6-7% of the annual mortality in developing countries (3). Some researches suggest that WSH interventions are effective and capable of delivering large health benefits to target populations (4,5). Prüss et al. estimated the disease burden from water, sanitation and hygiene (WSH) was first estimated at a global level in 1990 (1). More recently, the impact of WSH on the disease has been reassessed in a more comprehensive way (2), which estimated that almost one tenth of the global burden of disease could be attributed to water, sanitation and hygiene. Poor sanitation is the cause of water contamination, which causes many types of diseases. If sewage treatment is not appropriate, water related diseases would spread to the human environments.

Diseases associated with untreated water, poor sanitation and hygienic conditions comprise on average 6-7% of the annual mortality in developing countries (3). Some researches suggest that WSH interventions are effective and capable of delivering large health benefits to target populations (4,5). Prüss et al. estimated the disease burden from water, sanitation and hygiene (WSH) was first estimated at a global level in 1990 (1). More recently, the impact of WSH on the disease has been reassessed in a more comprehensive way (2), which estimated that almost one tenth of the global burden of disease could be attributed to water, sanitation and hygiene. Poor sanitation is the cause of water contamination, which causes many types of diseases. If sewage treatment is not appropriate, water related diseases would spread to the human environments.

Diseases associated with untreated water, poor sanitation and hygienic conditions comprise on average 6-7% of the annual mortality in developing countries (3). Some researches suggest that WSH interventions are effective and capable of delivering large health benefits to target populations (4,5). Prüss et al. estimated the disease burden from water, sanitation and hygiene (WSH) was first estimated at a global level in 1990 (1). More recently, the impact of WSH on the disease has been reassessed in a more comprehensive way (2), which estimated that almost one tenth of the global burden of disease could be attributed to water, sanitation and hygiene. Poor sanitation is the cause of water contamination, which causes many types of diseases. If sewage treatment is not appropriate, water related diseases would spread to the human environments.

Diseases associated with untreated water, poor sanitation and hygienic conditions comprise on average 6-7% of the annual mortality in developing countries (3). Some researches suggest that WSH interventions are effective and capable of delivering large health benefits to target populations (4,5). Prüss et al. estimated the disease burden from water, sanitation and hygiene (WSH) was first estimated at a global level in 1990 (1). More recently, the impact of WSH on the disease has been reassessed in a more comprehensive way (2), which estimated that almost one tenth of the global burden of disease could be attributed to water, sanitation and hygiene. Poor sanitation is the cause of water contamination, which causes many types of diseases. If sewage treatment is not appropriate, water related diseases would spread to the human environments.
structure of collecting data, modeling, and processing estimations, which are explained elsewhere (3,20-26). The data and methods used for a wide set of risk factors to compute global and regional comparative risk assessment of death and disease burden attributable to particular defined risk factors such as untreated water and sanitation are also described in detail (3).

There were five main steps for estimation of disease burden due to risk factors according to the basic approach of the GBD study in 2010. In the first step, risk–outcome pairs were selected to enter the analysis based on the criteria for causal association. The definition of untreated water source was “proportion of households using an unimproved water source (unprotected wells or springs, vendor-provided water, tanker trucks, surface water, and other unspecified sources)”, and insanitary environment was defined as “proportion of households using unimproved sanitation (traditional latrines, open latrines without squatting slabs, bucket latrines, hanging latrines, open defecation or no facilities, and other unspecified facilities). The certain outcomes were intestinal infectious diseases for both unimproved water source and unimproved sanitation (3).

Second, the distribution of exposure to each risk factor was estimated by means of doing a systematic search to identify published and unpublished data sources. Population surveys and censuses were the main data sources for untreated water source as well as unimproved sanitation (3). Statistical models were developed to use the existing data for exposures in countries for several years and for sex and different age groups to generate a complete and comprehensive dataset of exposure distributions. The exposure estimation method for unimproved water source and unimproved sanitation was Spatiotemporal Gaussian process regression (27-29). Extensive ranges of covariates originating from covariates in databases generated at the Institute for Health Metrics and Evaluation (IHME) for the GBD 2010 were defined, and the analysis considered important study characteristics to estimate the distribution of exposure to risk factors (3).

In the third step, effect size per unit of exposure for each risk-outcome pair was assessed. The source of relative risk to provide effect sizes for untreated water source and insanitary environment was based on new meta-analysis. The epidemiological evidence for the effects of water and sanitation was revised by reviewing the relation between water, sanitation and hygiene and diarrhea, regarding previous reviews (17,29,30,32) and a meta-regression was done for studies, which was designed to adjust for intervention and baseline group characteristics (3).

Using the theoretical-minimum-risk exposure distributions for alternative comparison was the next step. For untreated water source and unimproved sanitation, the theoretical-minimum-risk exposure distributions were as follows: “All households use a safe water source (household connection, a public tap or standpipe, a tube well or borehole, a protected well or spring, or rainwater collection), and “All households use improved sanitation (public sewers, septic systems, flush or pour-flush facilities, ventilated improved latrines, simple pit latrines with squatting slabs, and composting toilets)”, respectively.

Finally, mortality and disease burden attributable to risk factors (population attributable fraction) were calculated through comparing the current distribution of exposure to the theoretical minimum risk exposure distribution for each year, sex, age group and cause. Uncertainty in the estimates was also assessed by simulation analysis to take 1000 draws from the posterior distribution of exposure, relative risk, and each related outcome for each country, year, sex and age. At the end, the mean deaths and DALYs caused by each risk factor and the mean rank for the risk factors in the ranking list were calculated (3). Uncertainty in the exposure estimates, relative risks, theoretical minimum risk distributions and uncertainty in the relevant out-
come rates were distributed into the final estimates.

Results
There was a significant decline in DALYs number and DALYs rate attributable to untreated water and insanitary environment from 1990 to 2010. The highest percentage of decrease was demonstrated in the late neonatal age group. The number of DALYs decreased (94.42%) from 5,838 (95% UI: 198-14,837) in 1990 to 326 (9-863) in 2010. In addition, the rate of DALYs declined (92.01%) from 5,667 (95% UI: 192-14,402) per 100,000 in 1990 to 453 (13-1,199) per 100,000 in 2010. There was also 75.0% reduction in the age-standardized DALYs rate per 100,000 population over this period (Table 1).

The greatest percentage of decrease in the attributed number of deaths was also found in the late neonatal age group (95.45%), which was 66 (95% UI: 2-169) in 1990 and declined to 3 (95% UI: 0-9) in 2010. The age standardized death rate per 100,000 population decreased 100% as well as death rate in some age groups such as 1-4 years and 50-69 years (Table 2).

Years life lost (YLLs) number and years lived with disability (YLLs) rate decreased over this period in all age groups due to upgrading water supply systems and environmental sanitation. The highest decrease was also observed in the age group of late neonatal. The number of YLLs declined (95.43%) from 5,694 (95% UI: 191-14,553) in 1990 to 260 (7-744) in 2010, and the rate of YLLs decreased (93.47%) from 5,527 (95% UI: 185-14,126) per 100,000 in 1990 to 361 (10-1,034) per 100,000 in 2010. Furthermore, the decrease in the age standardized YLLs rate per 100,000 population was 84.09% (Table 3).

The highest percentage of decrease in YLDs number and YLDs rate due to untreated water and insanitary environment was found in the age group of 5-14 years, 59.98% and 41.67%, respectively. The remarkable point was that the number of YLDs increased in the age group of 15-49 years and higher, while the rate of YLDs decreased in all age groups. The age stand-

Health burden of untreated water and insanitary environments

Table 1. DALYs Rate and Number Attributed to Unimproved Water and Sanitation in Iran in 1990 and 2010

<table>
<thead>
<tr>
<th>Ages</th>
<th>Number of DALYs</th>
<th>Rates of DALYs (per 100,000)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1990</td>
<td>2010</td>
</tr>
<tr>
<td>Age-standardized</td>
<td>108 [4-243]</td>
<td>27 [1-63]</td>
</tr>
</tbody>
</table>

DALY: Disability adjusted life year, %Δ1 Between 1990 and 2010

Table 2. Deaths Rate and Number Attributed to Unimproved Water and Sanitation in Iran in 1990 and 2010

<table>
<thead>
<tr>
<th>Ages</th>
<th>Number of Deaths</th>
<th>Rates of Deaths (per 100,000)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1990</td>
<td>2010</td>
</tr>
<tr>
<td>1 to 4</td>
<td>224 [7-548]</td>
<td>21 [1-55]</td>
</tr>
<tr>
<td>5-14 years</td>
<td>57 [2-142]</td>
<td>17 [0-48]</td>
</tr>
<tr>
<td>15-49 years</td>
<td>52 [2-137]</td>
<td>51 [1-142]</td>
</tr>
<tr>
<td>50-69 years</td>
<td>49 [2-114]</td>
<td>17 [0-41]</td>
</tr>
<tr>
<td>All Ages</td>
<td>1,019 [33-2,284]</td>
<td>180 [5-438]</td>
</tr>
<tr>
<td>Age-standardized</td>
<td>1 [0-3]</td>
<td>0 [0-1]</td>
</tr>
</tbody>
</table>

%Δ1 Between 1990 and 2010

http://mjiri.iums.ac.ir
ardized YLDs rate per 100,000 population also decreased 35.00% (Table 4).

Table 5 demonstrates the percentage of DALYs, deaths, YLLs and YLDs attributed to untreated water and unimproved sanitation to total DALYs, deaths, YLLs and YLDs in Iran, which decreased significantly from 1990 to 2010.

Discussion

Recent World Health Organization (WHO) estimates for children (0–14 years) put the annual global diarrheal death toll at over 1.8 million far in excess of the toll for tuberculosis (81,000), malaria (844,000) and HIV/AIDS (302,000) put together (WHO 2008a). In addition, it has been estimated that 50% (range 39–61%) of the malnutrition (i.e. under nutrition), burden of disease alone is attributable to the environment, mainly because of insufficient or substandard water supply systems and poor environmental sanitation provision (33). WHO estimates of diarrheal mortality were changed to DALYs using standard formulas from the global burden of disease study (34). According to Table 1, a significant decrease has occurred in the number and rate of DALYs between 1990 and 2010 due to the development of new water systems and environmental sanitations of urban and rural areas in Iran. However, the number of DALYs increased 11.25% in 15–49 age group. Annette Prüss et al. estimated the disease burden from water, sanitation and hygiene to be 4.0% of all deaths and 5.7% of all diseases.

Table 5. The Percentage of Total DALYs, Deaths, YLLs and YLDs due to Unimproved Water and Sanitation in Iran from 1990 to 2010

<table>
<thead>
<tr>
<th>In all ages, all causes and both genders</th>
<th>1990</th>
<th>2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>DALYs</td>
<td>0.43 [0.01-0.99]</td>
<td>0.10 [0.02-0.22]</td>
</tr>
<tr>
<td>Deaths</td>
<td>0.32 [0.01-0.73]</td>
<td>0.05 [0.01-0.13]</td>
</tr>
<tr>
<td>YLLs</td>
<td>0.49 [0.02-1.14]</td>
<td>0.10 [0.04-0.24]</td>
</tr>
<tr>
<td>YLDs</td>
<td>0.27 [0.01-0.61]</td>
<td>0.10 [0.04-0.24]</td>
</tr>
</tbody>
</table>

DALY: Disability adjusted life year; YLL: Years life lost; YLD: Years lived with disability.
of the total disease burden (in DALYs) worldwide taking into account diarrheal diseases, schistosomiasis, trachoma, ascariasis, trichuriasis and hookworm disease (6).

According to the results of Table 2, deaths rate and number attributed to water supply development and environmental sanitation decreased from 1990 to 2010. One of the reasons for this reduction may be due to the development of water and wastewater treatment plants by water and wastewater company in Iran. Figure 1 shows the progress in construction of water and wastewater treatment plants in Iran. Up to 1997, this country had only 16 wastewater treatment plants (WWTPs), so most of the wastewater discharged to the environment and water bodies without any treatment. At 2013, this number reached to 150 WWTPs, so too much proportion of the wastewater was treated. Consequently, pollution of water bodies and reservoir waters decreased (Table 2).

Quality of consuming water is another important parameter in reduction of DALYs that have been considered in the period of 1997-2010. In 1997, only in a few big province centers, such as Tehran, Isfahan, Mashhad, Tabriz and Shiraz, the municipal drinking water resources were treated by conventional water treatment (coagulation, flocculation, slow/rapid sand filters
and chlorination). In other regions, the manual chlorination was probably the only treatment technology for potable waters. However, in 2010, the number of cities with water treatment plant was raised to 124 plants (Fig. 1). In these cities, conventional treatment applied for water treatment. Even in some rural communities, a central water treatment plant is constructed and operated for delivery of finished water to cover populations. DALYs or disease incidence rates can be used as a measure for disease burden associated with known levels of risk for a direct comparison between different risk-reduction strategies. Another reason for the reduction in DALYs number is attributed to the development of water distribution systems and sewerage pipelines. These two parameters have a very important role in prevalence of some diseases that are transmitted by water consumption and pollution. In 1997, only a few had access to fresh and treated water (Fig. 2), but in 2013 about 168,000 Km pipeline delivered treated water to people. In addition, in 1997, Iran had only 9,900 meter sewerage, but in 2013 it reached to 75,000 Km. sewerage systems have a very important role in the reduction of communicable diseases by water (like cholera); and this has been approved by many studies (35,36).

Health care during pregnancy, birth and infancy plays an important role in reducing illness and complications due to childbirth. Polluted water, poor environmental sanitation and hygiene accounted for 62,800 deaths and 2.81 million DALY's in China in 2008. Most (83%) of the attributable disease burden and most (97%) of the deaths occurred in young children. Diarrheal disease accounted for 98% of the attributable DALYs. Soil-transmitted helminthiasis were the second leading cause of attributable DALYs: An estimated 287 million such infections occurred in China in 2008, accounting for 29,800 DALY's (37).

Table 3 demonstrates that YLL rate and number attributed to developed water systems and sanitation decreased in all age groups. The highest and lowest reduction of number of YLL and rates of YLL occurred in the late neonatal and 15-49 year age groups, respectively.

According to Table 4, YLD number attributed to enhanced water systems, and sanitation dropped from early neonatal to 5-14 years but increased from 15 until >70 years.

This study has some limitations as the same as the limitations in the GBD study 2010, which are described elsewhere (3,20-27). The limitations in data sources had an effect on the exposure estimations of risk factors such as unimproved water and sanitation in Iran. Iran General Census of Population and Housing 2006, as a nationally representative collected data, which is provided by International Integrated Public Use Micro data Series (IPUMS), was the main source for unimproved water and sanitation estimates in Iran. The data sources that were not considered for water pollution estimates included population-based epidemiological studies, as well as national and sub-national health surveys. Due to the lack of access to data sources used for untreated water and insanitary environment estimates in Iran along with the extensive uncertainties, there was a substantial limitation to reach accurate estimates. Because of the incomplete or missing data on risk factor exposure, models were used to provide a complete and comprehensive dataset of exposure distribution. Estimation of exposure was made by statistical models, which used the predictors relevant to the exposure.
Considering the GBD limitations and the importance of measuring the burden of diseases, injuries and risk factors in Iran, a national systematic study titled National and Sub-national Burden of Disease (NASBOD) study was carried out in Iran to estimate the burden of diseases, injuries, and risk factors at national and sub-national levels from 1990 to 2013. The NASBOD study used a standardized protocol of data collection and estimation methods, providing comprehensive information to estimate health status at provincial level over a long period. Evaluating diseases and risk factor distributions at sub-national level would be the main source to identify the public health priorities and interventions among sub-national people and to inform policy makers in planning public health strategies (38).

National and sub-national Environmental Burden of Disease as a sub-component of NASBOD study can estimate the trends in the prevalence and health burden of unimproved water and sanitation at the national and sub-national levels between 1990 and 2013 (39). The results can help us provide the most effective strategies for policy making in Iran.

Conclusion
A significant decrease has occurred in the number of DALYs and deaths in Iran between 1990 and 2010 due to the development of new water distribution systems, waste water collection systems, instruction of water and wastewater treatment plants and subsequently environmental sanitations in Iran.

Acknowledgements
In terms of the publication of the present data, permission was granted from Professor Christopher J.L. Murray, the director of IHME, to the Non-Communicable Diseases Research Center, Endocrinology, and Metabolism Population Sciences Institute of Tehran University of Medical Sciences.

References

http://mjiri.iums.ac.ir


