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rules. Each time, in extracting fuzzy association rules, one 
of the QMs was used and five fuzzy rules extracted based 
on five measures. Then, FISs were designed on the basis 
of output of previous steps and evaluated in order to 
choose the best model. 

 
Pre-processing 
In this step, the average of each column was used to fill 

its missed values. To reduce the variety of baseline 
between variables, all data were normalized in (0, 1) 
interval by using uniform normalization method. In 
addition to the mentioned issues, SMOTE as an over-
sampling technique was used to balance two classes of 
samples. SMOTE is a known algorithm which generates 
synthetic examples from every minority classes on the 
basis of the nearest neighbors in order to increase 
generalization performance of classifier over the minority 
classes.  

 
Inferring the number of clusters for each attributes 
 To determine fuzzy system membership functions, 

FCM clustering method was used. One of the factors 
affecting the efficiency of proposed method was the 
number of clusters that should be set by the user. To find 
the best number of clusters for each feature, two different 
groups of clustering quality measures called Internal and 
Stability were examined for 2, 3 and 4 clusters. Stability 
measures included Average Proportion of Non-overlap 
(APN), Average Distance (AD), Average Distance 
between Means (ADM), Figure Of Merit (FOM) and 
internal measures were included connectivity, Silhouette 
and Dunn index (34). The description of stability and 
internal measures is shown in Table 2.  

 
Clustering by fuzzy C-means 
After determining the best number of clusters, FCM 

method was applied to each feature and fuzzy membership 
functions prepared based on clustering output.  

 
Mining fuzzy association rules and weighting them by 

QMs 
According to obtained membership functions, fuzzy 

association rules were extracted. Each time, one of the 
QMs considered in extracting fuzzy association rules i.e. 
five fuzzy rule bases were extracted based on five 
measures. 

Format of a fuzzy association rule was as IF x is X then 
y is Y where x (y) is input (output) variable and X (Y) are 
input (output) membership functions. Then the quality 
measures are defined and calculated as follows. 

1.  Truth /Confidence (ࢀ) 
This measure is equal to means of ratio of transactions 

in dataset which antecedent and consequent parts of rules 
occur together divided to total number of transactions 
containing the antecedent part expressed as a percentage 
(Eq. 1). 

 ܶ =	∑ ௠௜௡(ఓ೉(௫೘).ఓೊ(௬೘))ಾ೘సభ ∑ ఓ೉(௫೘)ಾ೘సభ                                 (1) 
Where, M is the number of input data (here 917). 
 
2. Coverage (ܥ) 
It specifies whether a rule is supported by sufficient 

amount of data. For calculation of ܥ first coverage ratio is 
calculated as follows: 

௖ݎ  = ∑ ௧೘ಾ೘సభெ                         (2) 
Where ݐ௠ = ቄ1																			ߤ௑(ݔ௠) > (௠ݕ)௒ߤ	݀݊ܽ		0 > 																															݁ݏ݅ݓݎℎ݁ݐ݋																							0	0  

                                                              (3) 
 
Since ݎ௖ is very small (often less than 0.1), its value 

normalized by function ݂ in the range of 0 and 1 i.e., 
 

Table 2. Description of stability and internal measures [34] 
Description Cluster validity criteria 
Connectivity indicates the degree of connectedness of the clusters, as determined by k-nearest 
neighbors. Connectedness corresponds to what extent items are placed in the same cluster as their 
nearest neighbors in the data space. The connectivity has a value between 0 and infinity and should 
be minimized. 

Connectivity 

In
te

rn
al

 c
rit

er
ia

 The Silhouette Width is the average of each observation's Silhouette value. The Silhouette value 
measures the degree of confidence in a particular clustering assignment and lies in the interval [-1, 
1], with well-clustered observations having values near 1 and poorly clustered observations having 
values near -1. 

Silhouette Width 

The Dunn Index is the ratio between the smallest distances between observations not in the same 
cluster to the largest intra-cluster distance. It has a value between 0 and infinity and should be 
maximized. 

Dunn Index 

The APN measures the average proportion of observations not placed in the same cluster by 
clustering based on the full data and clustering based on the data with a single column removed. 
The values of APN range from 0 to 1, with smaller value corresponding with highly consistent 
clustering results. 

Average proportion of non-
overlap (APN) 

St
ab
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ty
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The AD measures the average distance between observations placed in the same cluster under both 
cases (full dataset and removal of one column). AD has a value between 0 and infinity, and smaller 
values are also preferred. 

Average distance (AD) 

The ADM measures the average distance between cluster centers for observations placed in the 
same cluster under both cases. The values of ADM range from 0 to 1, with smaller value 
corresponding with highly consistent clustering results. 

Average distance between 
means (ADM) 

The FOM measures the average intra-cluster variance of the deleted column, where the clustering is 
based on the remaining (undeleted) columns. It also has a value between zero and 1, and again 
smaller values are preferred. The values of FOM range from 0 to 1, with smaller value 
corresponding with highly consistent clustering results. 

Figure of merit (FOM) 
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(௖ݎ)݂ = ۔ۖەۖ
ۓ ௖ݎ			.	0 ≤ 	 ଵݎ				.	௥భ)ଶ	௥భ௥మି	ଵ2(௥೎ିݎ < 	 ௖ݎ < 	 ௥భା	௥మଶ1 − 2 ቀ௥మି	௥೎௥మି	௥భቁଶ 	.				௥భା	௥మଶ ≤ 	 ௖ݎ < ௖ݎ			.			ଶ1ݎ ≥ ଶݎ

 

                                                 (4) 
  
Function ݂ has two parameters that in this paper 

represented as ݎଵ = 0.02 and ݎଶ = 0.15 and finally ܥ =  .(௖ݎ)݂
 
3. Reliability (ܴ) 
The reliability can be viewed as measuring the 

computed validity of a rule using equation 5. A rule is 
valid if and only has high degree of truth (ܶ) and coverage 
ܴ .(ܥ) = ݉݅݊(ܶ.  (5)                                      (ܥ

 
4. Comprehensibility (݉݋ܥ) 
The measure considers the length of each rule. If the 

number of antecedent variables is ݈௔ and the number of 
consequent variables of a rule is	݈௖., then	݉݋ܥ is as 
follows: ݉݋ܥ =	 ௟௢௚(ଵା௟೎)௟௢௚(ଵା	௟೎ା	௟ೌ)                      (6) 

 
5. Interestingness (ܫ) 
The measure had a high value for rules that 

comparatively was a less occurrence in the whole of 
dataset and possibly had a specific innovation and is 
calculated as follows. 

ܫ  = 	 ∑ ௠௜௡൫ఓ೉(௫೘).ఓೊ(௬)൯ಾ೘సభ∑ ఓ೉(௫೘)ಾ೘సభ 	×	∑ ௠௜௡൫ఓ೉(௫೘).ఓೊ(௬)൯ಾ೘సభ ∑ ఓೊ(௬)ಾ೘సభ 	×(1 −	∑ ௠௜௡	(ఓ೉(௫೘).ఓೊ(௬))ಾ೘సభ ெ )                                 (7) 
 
Fuzzy inference system development 
Five Mamdani product Fuzzy Inference Systems (FISs) 

were designed based on membership functions and rules 
which obtained in steps 2 and 3 that each of which 
contained one of the five QMs as weight of rules. 

 
Evaluation 
In order to evaluate FIS, measures such as precision, 

specificity, sensitivity and accuracy were used. The 
calculations of measures are given in Table 3. 

 
Results 
The proposed classification method was examined using 

data set of Indian liver patients available at UCI repository 
and programmed using R3.2.3 and MATLAB R2014a. In 
pre-processing step, first of all, in 4 cases the rate of A/G 
was filled using average of column, and then, whole data 

set normalized to (0, 1) to reduce the variability of 
baseline between variables. Finally, since in given data 
set, less than one-third of records were assigned to class 2 
(non-liver patients), number of records in this class 
increased up to three times using SMOTE technique. Total 
number of samples increased to 917. 

 To find fuzzy membership functions, FCM clustering 
was used by receiving the number of clusters as input. 
Furthermore, to determine the best number of clusters two 
different groups of clustering quality measures including 
stability and internal was used. Table 4 is clearly shown 
the values of these measures in terms of the number of 
clusters for each attribute. For two binary attributes i.e. 
gender and selector, two single fuzzy membership 
functions were defined and tuned on 0 and 1. 

In this step, fuzzy association rules were mined 
according to calculated membership functions. FARM 
algorithm has two parameters: 1) min-support that 
specifies the minimum support for finding frequent item 
sets and 2) min-confidence that puts only rules in output 
that have confidence higher than threshold. However, in 
this paper, four other QMs have been introduced in 
addition to confidence value, that each of which represents 
a specific aspect of the rule quality. In order to make a 
fuzzy rule base, FARM algorithm was implemented five 
times with min-support= 0.02 and min-QM= 0.7. 
Obtained rules in each of the FISs were weighted 
according to one of the QMs. The performance of the 
proposed classification method using weighted rule bases 
is shown in Table 5. 

 
Discussion 
To predict liver disease, Jin et al. used six classification 

algorithms including Naïve Bayes, Decision tree, K-
Nearest neighbors (KNN), Multi-Layered Perceptron 
(MLP), Logistic and Random Forest (RF)and compared 
precision, accuracy, sensitivity, specificity, the area under 
ROC curve, Kappa and Root Mean Square Error (RMSE) 
using the ILPD. The method of cross validation with 10 
fold was used to evaluate and compare classification 
algorithms. The results showed that the logistic had the 
best performance in terms of sensitivity (= 91.3%), 
Accuracy (= 72.7%), ROC and RMSE (= 0.42) and Naïve 
Bayes in terms of precision (= 95.1%), specificity (= 
95.2%) and Kappa (35). 

Gulia et al. used some classification algorithms 
including J-48 classifier, MLP, SVM, Bayesian network 
and RF classified ILPD. In second phase, most important 
features were selected using greedy step wise approach 
and then classification algorithms applied on obtained 
significant subset of features. Finally, the results of two 
examinations, with and without feature selection, were 
compared based on accuracy and mean absolute error. All 
steps were performed using WEKA data mining tool. The 

Table 3. Statistical Meaning for Sensitivity, Specificity, Precision and Accuracy where  
DefinitionsStatistical measures of the performance 

PPV= TP/(TP+FP)Precision or Positive Predictive Value (PPV) 
SPC = TN/N = TN/(TN+FP)Specificity (SPC) or true negative rate
TPR=TP/P = TP/ (TP+FN) Sensitivity or True Positive Rate (TPR) or recall 

ACC=(TP+TN)/(TP+TN+FP+FN) Accuracy (ACC) 
TP is true positive, FN false negative, FP false positive and TN true negative 
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results revealed that SVM with Accuracy of 71.36% had 
the best performance for the whole of database and RF 
reached to accuracy of 71.87% after feature selection (4). 

SVM has been used to classify two data sets available in 
UCI repository consisting of ILPD and BUPA by Hashem 
et al. In this paper, features have been ranked. The 
classification results have been evaluated based on 
different sets of most ranked features. MATLAB has been 
used to implement SVM and feature ranking algorithm. 
Applying SVM to 4, 6 and 8 most significant features of 
ILPD showed that this algorithm yielded better results for 
8 (6) first features, with an error rate of 26.8 (27) percent, 
sensitivity of 90 (96.6%), Prevalence 71 (71%), accuracy 
73.2 (73%) and specificity 30 (12%) respectively (36). 

Liang et al. have proposed a combination of GA and 
artificial immune to diagnose liver disease. Two data sets 
(ILPD and Liver Disorder) from UCI repository and 20-
flod cross-validation have been used to evaluate the 
proposed method. Accuracy, sensitivity, specificity, 
precision and F-measure measured as 98.1%, 98.9%, 96%, 
98.5% and 98.7% respectively. The results showed that 

the proposed method for ILPD obtained higher accuracy 
than C4.5 and Bayes methods (37). 

Vijayarani et al. have used two classification 
algorithms, SVM and Naïve Bayes, to predict liver disease 
in ILPD. Two classifiers were implemented using 
MATLAB and compared based on precision, F-score and 
execution time. Results indicated that although SVM 
yielded precision of 76.6% and F-Score of 33.1% was 
better than Naïve Bayes but its execution time (3210.00 
ms) was twice in comparison with Bayes (1670.00 ms) 
(10). 

Ramana et al. have used two data sets, BUPA and 
ILPD, for evaluation of algorithms that has been 
implemented using WEKA. First significant features were 
selected by 4 different feature selection algorithms 
including Principle Component Analysis (PCA), 
Correlation-based Feature Selection (CFS), random 
projection and random subset. Then a number of 10 
algorithms from 5 different categories of classification 
algorithms including tree-, statistical-, MLP-, rule-based 
and lazy learners were considered as liver disease 

Table 4. Values of internal and stability measures in terms of the number of clusters for each attribute 
Attribute #Clusters: 2 #Clusters: 3 #Clusters: 4

Internal criteria Stability criteria Internal criteria Stability criteria Internal criteria Stability criteria
Age Conn: 3.5369 

Dunn: 0.0222 
SW: 0.5799 

APN:  0.0000 
AD:  0.1672 

ADM:  0.0774 
FOM: 0.0942 

Conn: 3.7000 
Dunn: 0.0286 
SW: 0.5462 

APN:  0.0000 
AD:  0.1487 

ADM:  0.0706 
FOM: 0.0943 

Conn: 13.1179 
Dunn: 0.0294 
SW: 0.5473 

APN:  0.0000 
AD:  0.1389 

ADM:  0.0772 
FOM: 0.0944 

Total Bilirubin (TB) Conn: 2.5762 
Dunn: 0.0044 
SW: 0.8302 

APN:  0.0000 
AD:  0.0428 

ADM: 0.0217 
FOM:  0.0417 

Conn: 9.6683 
Dunn: 0.0016 
SW: 0.6769 

APN: 0.0000 
AD:  0.0385 

ADM: 0.0218 
FOM:  0.0417 

Conn: 5.5905 
Dunn: 0.0016 
SW: 0.6757 

APN:  0.0000 
AD:  0.0360 

ADM:  0.0226 
FOM: 0.0417 

Direct Bilirubin (DB) Conn: 5.5956 
Dunn: 0.0060 
SW: 0.8179 

APN:  0.0000 
AD:  0.0810 

ADM:  0.0413 
FOM: 0.0717 

Conn: 10.1587 
Dunn: 0.0069 
SW: 0.6945 

APN:  0.0000 
AD:  0.0716 

ADM:  0.0418 
FOM: 0.0718 

Conn: 10.4147 
Dunn: 0.0079 
SW: 0.6924 

APN:  0.0000 
AD: 0.0669 

ADM:  0.0427 
FOM: 0.0718 

Alkphos Alkaline 
Phosphotase 

Conn: 2.3290 
Dunn: 0.0034 
SW: 0.7008 

APN:  0.0000 
AD:  0.0752 

ADM: 0.0341 
FOM: 0.0594 

Conn: 5.2746 
Dunn: 0.0006 
SW: 0.5734 

APN: 0.0000 
AD:  0.0672 

ADM:  0.0327 
FOM: 0.0594 

Conn: 14.0056 
Dunn: 0.0006 
SW: 0.4650 

APN:  0.0000 
AD:  0.0648 

ADM:  0.0336 
FOM: 0.0595 

Sgpt Alamine 
Aminotransferase 

Conn: 5.2579 
Dunn: 0.0005 
SW: 0.7301 

APN:  0.0000 
AD:  0.0413 

ADM: 0.0192 
FOM: 0.0459 

Conn: 5.6563 
Dunn: 0.0006 
SW: 0.5551 

APN:  0.0000 
AD: 0.0361 

ADM: 0.0172 
FOM: 0.0460 

Conn: 10.1750 
Dunn: 0.0007 
SW: 0.5492 

APN:  0.0000 
AD:  0.0329 

ADM: 0.0190 
FOM: 0.0460 

Sgot Aspartate 
Aminotransferase 

Conn: 3.3377 
Dunn: 0.0008 
SW: 0.7322 

APN:  0.0000 
AD:  0.0240 

ADM:  0.0112 
FOM: 0.0294 

Conn: 13.2794 
Dunn: 0.0002 
SW: 0.6140 

APN:  0.0000 
AD:  0.0212 

ADM: 0.0105 
FOM: 0.0294 

Conn: 15.3611 
Dunn: 0.0002 
SW: 0.5464 

APN:  0.0000 
AD: 0.0201 

ADM: 0.0113 
FOM: 0.0294 

Total Protiens (TP) Conn: 0.0000 
Dunn: 0.0270 
SW: 0.5769 

APN: 0.0000 
AD:  0.1384 

ADM:  0.0631 
FOM: 0.0787 

Conn: 0.0000 
Dunn: 0.0294 
SW: 0.5088 

APN:  0.0000 
AD:  0.1258 

ADM:  0.0604 
FOM: 0.0788 

Conn: 0.0000 
Dunn: 0.0345 
SW: 0.5438 

APN:  0.0000 
AD:  0.1156 

ADM:  0.0630 
FOM: 0.0789 

Albumin (ALB) Conn: 0.0000 
Dunn: 0.0435 
SW: 0.5773 

APN:  0.0000 
AD: 0.1534 

ADM:  0.0699 
FOM: 0.0865 

Conn: 0.0000 
Dunn: 0.0526 
SW: 0.5715 

APN:  0.0000 
AD: 0.1353 

ADM: 0.0636 
FOM: 0.0866 

Conn: 0.0000 
Dunn: 0.0588 
SW: 0.5296 

APN:  0.0000 
AD:  0.1276 

ADM: 0.0704 
FOM: 0.0867 

Albumin and Globulin 
Ratio (A/G ratio) 

Conn: 0.6722 
Dunn: 0.0106 
SW: 0.5313 

APN:  0.0000 
AD:  0.1104 

ADM:  0.0476 
FOM: 0.0638 

Conn: 0.5000 
Dunn: 0.0244 
SW: 0.5637 

APN:  0.0000 
AD:  0.0966 

ADM:  0.0455 
FOM: 0.0638 

Conn: 4.6012 
Dunn: 0.0061 
SW: 0.5444 

APN:  0.0000 
AD:  0.0906 

ADM:  0.0476 
FOM: 0.0639 

 
Table 5. Performance of the proposed classification method using weighted rule bases 
 
 

Interestingness>0.7 
#Rules:126 

Comprehensibility>0.7 
#Rules: 69 

Reliability>0.7 
#Rules: 121 

Coverage>0.7 
#Rules: 148 

Confidence>0.7 
#Rules: 133 

Precision 0.9184 0.8405 0.9182 0.8147 0.9180
Specificity 0.9281 0.8517 0.9281 0.8184 0.9281
Sensitivity 0.9736 0.9375 0.9712 0.9615 0.9688
Accuracy 0.9487 0.8907 0.9477 0.8833 0.9466
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prediction models. Results showed that the combination of 
K-Star method with CFS feature selection algorithm had 
the best accuracy 73.07% in terms of predicting liver 
disease (38). 

Kiruba et al. have trained a set of 22 classification 
algorithms using a data set consists of 900 records which 
has been obtained from merging of two data sets of liver 
patients known as BUPA and ILPD. After training, 
performance of classifiers was tested on two mentioned 
data sets separately. Results showed that the classification 
accuracy of random tree and C4.5 were 100%, while C4.5 
had lower execution time than random tree (39). 

Tiwari et al. have examined the performance of ANN 
based classification algorithms. For this purpose, ILPD 
data set divided into two groups of men and women and 
people younger than 18 years were excluded. Then, 
significant features of two subsets were extracted using 
univariate analysis of variance and CFS. The performance 
of 4 ANN-based classification algorithms including SVM, 
self-organization map and Radial Basis Function (RBF) 
were compared based on the 5 classification quality 
factors including accuracy, mean absolute error, RMSE, 
relative absolute error and root relative squared error. 
They concluded that SVM outperformed other techniques. 
Results showed that accuracy of SVM was equal to 
99.76% and 97.7% for men and women data sets 
respectively with a low error rate (2). 

Sarojini has addressed reducing data dimension by 
excluding unimportant features and improving the 
performance of classification algorithms at the same time. 
First most significant attributes of ILPD were selected 
using wrapper based feature subset selection approach. 
Then the proposed classification algorithm was 
implemented before and after removing unimportant 
features. Results showed that the proposed method caused 
to reduce data dimension by 70% and increase 
classification accuracy from 66.038 to 73.413 (~ 7%) (40). 

According to studies done on ILPD, it is revealed that 
most of them used supervised classification methods for 
prediction, while all considered as black box except 
decision trees. Moreover, several studies (2, 4, 36, 38, 40) 
applied feature selection algorithms and classified a subset 
of important features. Selecting features, caused to not 
consider all relationships between data, while in many 
cases the purpose of the researchers, was gaining a clear 
insight of predictive model and hidden associations 
between attributes, in addition to obtaining high accuracy 
in predicting. For this reason, despite the fact that some 
previous approaches (37,39) have achieved higher 
accuracy than the proposed approach, in this study fuzzy 
association rule-based classifier was used for predicting 
liver disease. Of course, it should be noted that the 
proposed method outperformed 31 from 34 methods 
applied in previous studies and this means that this model 
despite good performance in predicting, is also 
understandable for humans. 

In addition, this research using fuzzy sets to handle the 
effect of uncertainty which has been considered only in 
Sarojini’s work (40), however, their method was not based 
on rules. As a result, it did not provide an understandable 
model for humans. Moreover, in this paper the number 

and parameters of fuzzy membership functions were 
obtained using FCM (i.e. this method constructs a data-
fitted prediction model without the need for expert 
knowledge). 

Weighting of rules has not been addressed in previous 
studies, while in this study, 5 QMs were conducted. Also 
QMs determined to ensure that the proposed model not 
only requires no expert knowledge but also has the best fit 
to data set. 

In the evaluation step, it became clear that among the 
QMs intended interestingness, reliability and confidence 
outperformed respectively and precision, sensitivity, 
specificity and accuracy are over 90%. According to the 
results of weighting with comprehensibility and coverage 
measures, it is found that the majority of rules belonging 
to the class of non-liver patient had less support, therefore 
less weight assigned to them. For this reason, (FN/ TP) 
was less than (FP/TN), thus the sensitivity was more than 
specificity. 

 
Conclusion 
In this paper, a classification method was developed to 

predict liver disease which in addition to high 
classification accuracy, it was created without expert 
knowledge and provided an understandable explanation of 
data. This method is convenient and efficient specially 
when there is no access to experts. Future works may be 
applying this method on the other data sets or using 
different methods for pruning the rule base in order to 
make a more understandable description of data set.  
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