Trend forecasting of main groups of causes-of-death in Iran using the Lee-Carter model

Katayoun Jahangiri¹, Saeide Aghamohamadi*², Ardeshr Khoosravi², Elaheh Kazemi²

Introduction
Credible information on the causes of death and mortality trends and its changes is one of the most basic principles of planning, management, and evaluation of the health sectors in all countries. Collection and analysis of information on causes of death have been utilized for several years as an instrument for assessment and monitoring of community health promotion and to determine priorities of health measures (1).

International Statistical Classification of Diseases and Related Health Problems (ICD) and its rules are the standard and basis for determining the exact cause of death that helps countries better identify the pattern of death. In fact, ICD is a diagnostic classification and an international standard for all public and epidemiologic purposes as well as for the number of objectives of health care services (2). Thus using this classification has considerably helped to recognize, monitor and predict trends and causes of death and led to the determination of health priorities, the allocation of resources and priorities for "health-oriented development" of the health sector (3).

Moreover, analysis of trends in cause of death based on ICD is of great importance in anticipating overall death rates. The need for better methods for predicting mortality trends and the impact of various factors on the epidemiology of death has been recognized for some organizations (4). As the importance of predicting mortality has an...
increasing trend, several methods have also been developed for modeling and forecasting mortality (5).

Most new methods for predicting mortality employ two-factor models with two factors of age and time period. Lee Carter model is one of these two-factor models for predicting mortality (6). According to the study by Maria Chiara that examines the different approaches of predicting causes of death, the Lee Carter model is a valid method for predicting the cause of death with a linear trend which is superior to other simplifying assumptions that are dependent on subjective judgment (7).

Moreover, this model can cover most of the changes in mortality rates in developing countries’ population (8) and based on the results of the study by Komijani, Lee Carter model has high power and efficiency to predict mortality in Iran (9). So this study aims to predict the crude and the main groups of causes of death in Iran until 2035 using Lee Carter model.

Methods
In this descriptive and analytical study, the study population included all deaths recorded in the system of registration and classification of causes of death in the Ministry of Health and Medical Education of Iran during the years 2006 to 2015. The classification was based on the cause of death, age groups, and gender. The data were collected from different sources such as hospitals, clinics, physicians’ offices, Forensic Medicine Organization, health centers, and cemeteries. Data collection tools were death certificate forms, burial permit, and information forms.

After data collection, causes of death were determined, coded and recorded by the coders based on the International Statistical Classification of Diseases (2) and then the recorded items were evaluated in terms of quality. In order to enhance the quality of the data, the codes of impossible causes of death in terms of gender and age, codes of improbable causes of death in terms of fatality of causes, codes of causes of death from ill-defined or null status by World Health Organization Standard Guideline were corrected (10).

Furthermore, the number of deaths in terms of causes of death and gender and age groups were calculated, the rate of death was computed by dividing the number of causes of death to the population of that age group/gender per 100000 population.

It should be noted that for the denominator of the rates, population estimates between two censuses of Statistical Center of Iran were employed for the years 2007-2010, 2012-2015 and for the years 2006 and 2011 the census information of that year was used (11).

The Lee Carter model was used to predict death rates. Lee-Carter model as a method of extrapolation is a combination of a rich demographic model and time series method. Generally, one of the strengths of Lee Carter methods and other extrapolation methods is their application in a situation where there is a linear trend of mortality rates in the age groups (12). Considering the existence and calculation of the linear trend of crude and cause of death in this study, this method was utilized.

Model Structure
Crude death rate at age x and time t in a society is shown with \(M(x,t) \) and is calculated using this relationship:

\[
M(x,t) = \frac{d_{x,t}}{L_{x,t}} = t = t_0, (t_1 + 1), \ldots, (t_1 + T - 1), x = x_1, x_2, \ldots, x_N
\]

Where \(d_{x,t} \) and \(L_{x,t} \) indicate the number of dead people and the population at risk of death at age x and time t for the given society, \(t_0 \) shows the first time point and \(N \) is the number of age groups under study.

The structure of the proposed model of Lee-Carter is presented as follows:

\[
LnM(x,t) = a_x + b_xk_t + \epsilon_{x,t}
\]

Where \(LnM(x,t) \) indicates the natural logarithm of death rates observed in the age \(x \) and in year \(t \) and \(a_x \), \(b_x \) and \(k_t \) are age and time dependent parameters, respectively. \(a_x \) indicates the average time logarithm of death rates at age \(x \); in other words, \(\epsilon_{x,t} \) illustrates the overall shape of the mortality rate’s curve; \(k_t \) is the mortality index in year \(t \) which indicates the main trend in the natural logarithm of mortality rates for all ages over time; and \(b_x \) shows the rate of changes in the mortality rate logarithm at age \(x \) to (per) changes in the mortality index over time. Component, \(\epsilon_{x,t} \) is equal to the component error at age \(x \) and time \(t \). According to equation (2), the following relation is obtained:

\[
\frac{d}{dt}LnM(x,t) = b_x(\frac{d}{dt}k_t)
\]

According to equation (3), if the \(k_t \) mortality index decreases linearly over time, it remains constant and age specific mortality rate will decrease by its constant exponential rate. The error terms, \(\epsilon_{x,t} \), have a Gaussian distribution with zero mean and variance \(\sigma^2 \epsilon \) and represents part of the changes in age specific mortality rate that cannot be explained by the model. Lee and Carter believe that \(k_t \) parameter covers the major scatter in the data and, as a result, the variance of the error term is constant over time (13).

Predicting Mortality Rate
After estimating the parameters of the model and age-specific mortality rates, the Lee-Carter model is employed to predict the mortality rate. For this purpose, Lee and Carter first developed time series model for \(k_t \) and then by predicting the number of \(k_t \), they predicted mortality rate \(m(x,t) \) for each age group, and at any particular time. For the prediction, first \(k_t \) is predicted applying time series modeling and its future values. Finding the best model for \(k_t \) is very important because an inappropriate model will result in incorrect prediction of the future behavior of mortality rate. Random Walk model with Drift for \(k_t \) is presented as follows:

\[
k_t = k_{t-1} + \theta + \epsilon_t, \quad \epsilon_t \sim N(0, \sigma^2_{\epsilon_t})
\]

In the second stage of prediction, values for age-specific mortality rates are anticipated. Regardless of the errors
term, changes in the rate of deaths in a particular year are completely dependent together and are linear functions of time variable parameter of \(k_t \). Therefore, to calculate confidence intervals of mortality rates in any age group and in any given year, only \(k_t \) confidence interval should be calculated. Prediction of mortality rates with respect to the estimated parameter values and predicted values of \(is calculated according to the following equation (13):

\[
m^*_t (x, t+s) = m^*_t (x, t) \exp \left(b^*_x (k^*_{t+s} - k^*_t) \right), s = 1, 2, ..., S
\]

In this study for predicting crude rates and the main groups’ rate of causes of death in Iran, after calculating the rate of crude and cause-specific death in 5-year age groups during the study, the 20-year trend was predicted applying the Lee Carter model.

It should be noted that, in this model, the International Classification of Diseases was used to predict the trend of the causes of death. Of the total 21 main disease groups in this classification, the diseases that cannot be considered as the underlying causes of death and disease groups with negligible or zero value in age and gender groups were excluded from the study. Finally, the forecast for 13 major groups of causes of death was conducted.

Data analysis tools

Demography package (18.1) of Lee Carter model in the R software version 3.3.1 was utilized to predict mortality rates.

Ethics

This study is not based on individual information and medical intervention and use of mortality data of the Islamic Republic of Iran, formal permission of Iran’s Ministry of Health and Medical Education with latter number D308/22604 has been issued.

Results

In this study, crude death rates during the years 2006 to 2015 in the 5-year age groups and in total population were calculated and then the rates forecasted for the next 20 years utilizing the Lee Carter model, as shown in Table 1.

According to the results, the crude death rate in all age groups under 75 years from 2006 to 2015 had a decreasing trend, and this negative trend is expected to continue until 2035. Furthermore, in age groups over 75 years, this trend has been increasing.

After calculating the crude death rate, the causes of death rates were forecasted until the year 2035 (Table 2).

According to the results of the forecast for 2035, disease groups such as intentional and unintentional injuries, congenital malformations, deformities and chromosomal abnormalities, diseases of the circulatory systems and mental and behavioral disorders will have decreasing trends while diseases of the genitourinary system, diseases of the digestive system, diseases of the respiratory system, diseases of the nervous system, endocrine , nutritional and metabolic diseases, diseases of blood and blood-forming organs and immune mechanisms, neoplasms, and infectious and parasitic diseases rates will have increasing trends.

Among these diseases, it is expected that unintentional injuries with decreasing rate of 54.19 per 100000 population during the years 2006 until 2035 will have the largest decline among the leading causes of death and diseases of the circulatory system with decreasing rate of 46.32 per 100000 population has the second rank.

Moreover, endocrine, nutritional and metabolic diseases with increasing rate of 187.52 and neoplasms with an increasing rate of 70.71 per 100000 population will have the largest increase in mortality rate from 2006 to 2035.

According to the ranking of the cause of death groups during the study years, it was predicted that diseases of the circulatory system are responsible for highest rate of mortality until 2031 in total population (first rank) while in 2035, endocrine, nutritional and metabolic diseases by rate of 197.71 per 100000 population will be responsible for the highest rate of mortality in Iran. In addition, it is predicted that from the year 2021 onwards, mental and behavioral disorders will be responsible for the lowest rate of mortality among the causes of death groups.

As can be seen in Table 3, it is predicted in the year 2035 that pattern of causes of death in Iran will drastically

Table 1. Crude death rate (per 100 thousand population) separated by age groups during the years 2006 to 2035

<table>
<thead>
<tr>
<th>Age Group</th>
<th>2006</th>
<th>2011</th>
<th>2016</th>
<th>2021</th>
<th>2026</th>
<th>2031</th>
<th>2035</th>
</tr>
</thead>
<tbody>
<tr>
<td>(years)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Under 5</td>
<td>453.63</td>
<td>323.5</td>
<td>225.86</td>
<td>182.79</td>
<td>147.93</td>
<td>119.72</td>
<td>101.08</td>
</tr>
<tr>
<td>5-9</td>
<td>41.42</td>
<td>40.71</td>
<td>27.34</td>
<td>23.31</td>
<td>19.87</td>
<td>16.94</td>
<td>14.91</td>
</tr>
<tr>
<td>10-14</td>
<td>39.9</td>
<td>38.57</td>
<td>36.48</td>
<td>35.32</td>
<td>34.19</td>
<td>33.1</td>
<td>32.25</td>
</tr>
<tr>
<td>15-19</td>
<td>88.68</td>
<td>87.21</td>
<td>72.57</td>
<td>68.38</td>
<td>64.43</td>
<td>60.71</td>
<td>57.89</td>
</tr>
<tr>
<td>20-24</td>
<td>123.45</td>
<td>102.99</td>
<td>74.02</td>
<td>62.95</td>
<td>53.54</td>
<td>45.53</td>
<td>40.0</td>
</tr>
<tr>
<td>25-29</td>
<td>136.14</td>
<td>107.18</td>
<td>67.63</td>
<td>54.97</td>
<td>44.68</td>
<td>36.32</td>
<td>30.77</td>
</tr>
<tr>
<td>30-34</td>
<td>142.64</td>
<td>126.51</td>
<td>80.33</td>
<td>67.42</td>
<td>56.58</td>
<td>47.49</td>
<td>41.28</td>
</tr>
<tr>
<td>35-39</td>
<td>157.44</td>
<td>142.14</td>
<td>103.3</td>
<td>90.18</td>
<td>78.72</td>
<td>68.71</td>
<td>61.63</td>
</tr>
<tr>
<td>40-44</td>
<td>199.5</td>
<td>186.31</td>
<td>158.88</td>
<td>148.59</td>
<td>138.96</td>
<td>129.95</td>
<td>123.17</td>
</tr>
<tr>
<td>45-49</td>
<td>313.02</td>
<td>260.22</td>
<td>193.74</td>
<td>168.22</td>
<td>146.05</td>
<td>126.81</td>
<td>113.25</td>
</tr>
<tr>
<td>50-54</td>
<td>471.86</td>
<td>446.87</td>
<td>352.79</td>
<td>322.9</td>
<td>295.54</td>
<td>270.49</td>
<td>252.0</td>
</tr>
<tr>
<td>55-59</td>
<td>725.53</td>
<td>680.87</td>
<td>562.76</td>
<td>519.84</td>
<td>480.19</td>
<td>443.57</td>
<td>416.29</td>
</tr>
<tr>
<td>60-64</td>
<td>1103.05</td>
<td>1128.82</td>
<td>997.5</td>
<td>958.23</td>
<td>920.5</td>
<td>884.25</td>
<td>856.28</td>
</tr>
<tr>
<td>65-69</td>
<td>1858.87</td>
<td>1717.25</td>
<td>1583.14</td>
<td>1520.56</td>
<td>1460.46</td>
<td>1402.74</td>
<td>1358.21</td>
</tr>
<tr>
<td>70-74</td>
<td>3173.36</td>
<td>3237.09</td>
<td>2408.59</td>
<td>2162.29</td>
<td>1941.18</td>
<td>1742.68</td>
<td>1598.6</td>
</tr>
<tr>
<td>75-79</td>
<td>5946.51</td>
<td>5660.44</td>
<td>5892.52</td>
<td>5990.22</td>
<td>6089.55</td>
<td>6190.51</td>
<td>6272.49</td>
</tr>
<tr>
<td>80+</td>
<td>11161.08</td>
<td>15318.19</td>
<td>19047.01</td>
<td>21754.18</td>
<td>24846.13</td>
<td>28577.54</td>
<td>31560.76</td>
</tr>
<tr>
<td>Total</td>
<td>435.86</td>
<td>451.1</td>
<td>427.47</td>
<td>421.44</td>
<td>415.5</td>
<td>409.64</td>
<td>405.01</td>
</tr>
</tbody>
</table>
Forecasting causes of death in Iran

Table 2. Mortality rate (per 100K population) of main disease groups from 2006 to 2035

<table>
<thead>
<tr>
<th>Rank</th>
<th>Main Groups of Causes-of-Death</th>
<th>Rate 2006</th>
<th>Rate 2011</th>
<th>Rate 2016</th>
<th>Rate 2021</th>
<th>Rate 2026</th>
<th>Rate 2031</th>
<th>Rate 2035</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Diseases of the circulatory system</td>
<td>201.9</td>
<td>201.7</td>
<td>201.5</td>
<td>201.3</td>
<td>201.1</td>
<td>200.9</td>
<td>200.7</td>
</tr>
<tr>
<td>2</td>
<td>Unintentional injuries</td>
<td>66.2</td>
<td>66.1</td>
<td>66.0</td>
<td>65.9</td>
<td>65.8</td>
<td>65.7</td>
<td>65.6</td>
</tr>
<tr>
<td>3</td>
<td>Neoplasms</td>
<td>52.8</td>
<td>52.7</td>
<td>52.6</td>
<td>52.5</td>
<td>52.4</td>
<td>52.3</td>
<td>52.2</td>
</tr>
<tr>
<td>4</td>
<td>Diseases of the respiratory system</td>
<td>27.9</td>
<td>27.8</td>
<td>27.7</td>
<td>27.6</td>
<td>27.5</td>
<td>27.4</td>
<td>27.3</td>
</tr>
<tr>
<td>5</td>
<td>Endocrine, nutritional and metabolic diseases</td>
<td>10.1</td>
<td>10.0</td>
<td>9.9</td>
<td>9.8</td>
<td>9.7</td>
<td>9.6</td>
<td>9.5</td>
</tr>
<tr>
<td>6</td>
<td>Diseases of the digestive system</td>
<td>9.8</td>
<td>9.7</td>
<td>9.6</td>
<td>9.5</td>
<td>9.4</td>
<td>9.3</td>
<td>9.2</td>
</tr>
<tr>
<td>7</td>
<td>Diseases of the genitourinary system</td>
<td>9.2</td>
<td>9.1</td>
<td>9.0</td>
<td>8.9</td>
<td>8.8</td>
<td>8.7</td>
<td>8.6</td>
</tr>
<tr>
<td>8</td>
<td>Intentional injuries</td>
<td>8.6</td>
<td>8.5</td>
<td>8.4</td>
<td>8.3</td>
<td>8.2</td>
<td>8.1</td>
<td>8.0</td>
</tr>
<tr>
<td>9</td>
<td>Congenital malformations, deformities and chromosomal abnormalities</td>
<td>8.5</td>
<td>8.4</td>
<td>8.3</td>
<td>8.2</td>
<td>8.1</td>
<td>8.0</td>
<td>7.9</td>
</tr>
<tr>
<td>10</td>
<td>Mental and behavioral disorders</td>
<td>7.8</td>
<td>7.7</td>
<td>7.6</td>
<td>7.5</td>
<td>7.4</td>
<td>7.3</td>
<td>7.2</td>
</tr>
<tr>
<td>11</td>
<td>Diseases of the nervous system</td>
<td>5.9</td>
<td>5.8</td>
<td>5.7</td>
<td>5.6</td>
<td>5.5</td>
<td>5.4</td>
<td>5.3</td>
</tr>
<tr>
<td>12</td>
<td>Infectious and parasitic diseases</td>
<td>4.5</td>
<td>4.4</td>
<td>4.3</td>
<td>4.2</td>
<td>4.1</td>
<td>4.0</td>
<td>3.9</td>
</tr>
<tr>
<td>13</td>
<td>Diseases of blood and blood-forming organs</td>
<td>4.2</td>
<td>4.1</td>
<td>4.0</td>
<td>3.9</td>
<td>3.8</td>
<td>3.7</td>
<td>3.6</td>
</tr>
</tbody>
</table>

DISCUSSION

Since 2006, Iran’s demographic architecture has entered into a demographic window which implies that almost 70% of the population of a country is placed at ages 15-64 and this trend lasts for nearly four decades (14, 15). Because of the changes in the structure of the population during the years of the survey, some changes are expected in the crude death rate and the pattern of causes of death.

According to the results of this study, it is anticipated that the crude death rate of Iran will have a declining trend in the total population. Based on the calculation of the World Bank, Iran's crude death rate has changed from 5.14 in 2006 to 4.54 in 2015 (16). Moreover, according to the report of World Development Indicators, Iran’s crude death rate in 2006 and in 2015 was reported as 5.14 and 4.55, respectively (17) where the declining pattern of the crude death rate and the pattern of causes of death.

In anticipation of the main groups of cause-of-death in the Islamic Republic of Iran until the year 2035, endocrine, nutritional and metabolic diseases with 32%, diseases of the circulatory system with 25% and neoplasms with 20% will be the three major causes of death in the country.

In a project carried out by World Health Organization to estimate the number of causes of death in 2030, it is anticipated that diseases of the circulatory systems, neoplasms, diseases of the respiratory system and infectious and parasitic diseases will be the four major causes of death in the world in 2030 and diabetes will be responsible for 3.5% of all death. Also based on zoning of Millennium Development Goals (MDGs) has placed Iran in the region of South Asia, anticipates the first five causes of death in countries of the region in 2030 will include ischemic heart disease, chronic obstructive pulmonary disease, diarrheal disease, and lower respiratory infections. It is indisputable that the diseases of the circulatory systems and neoplasms are the leading causes of death in all countries (18). Nevertheless, based on the results of this study in Iran, diseases of the circulatory systems with a gentle slope will be on the decline and neoplasms will have an increasing trend. However, the highest rate of increase would be associated with the endocrine, nutritional and metabolic disease. The overall pattern of outbreaks endocrine, nutritional and metabolic disease in the world demonstrated that the incidence of these diseases has considerable growth in developing countries (19). However, increasing age leads to higher prevalence of diabetes, such that the prevalence of diabetes from 4.1% in those aged 25-44 years was more than 10% in those aged over 65 years old (20). Considering the change in age structure of...
Iran’s population in 2035 and due to 21.4% increase in population aged over 45 years in comparison to 2015 (15), we expected a high prevalence of the disease and increase in mortality rate caused by this disease. In a country like Korea with growing elderly population, it has been estimated that cancers, cardiovascular disease, respiratory diseases, and diabetes, will be the most common causes of mortality in this country in 2030 (21).

Conclusion
Iran, in the near future, is faced with the aging population and high prevalence of non-communicable diseases; with continuing the current trends in resource allocation, many people's needs will remain unanswered. Thus, we should look beyond the health system and should promote public health using a comprehensive-preventative approach and applying suitable measures and policies prohibit the burden of population aging and non-communicable diseases.

Acknowledgments
The researchers of this study are thankful to the death registration authorities at medical universities who have contributed to the data recordings.

Conflict of interests
The authors declare that they have no competing interests.

References