Virtual reality applications for chronic conditions management: A review

Sadrieh Hajesmaeel Gohari, Elahe Gozali, Sharareh R. Niakan Kalhori

Received: 11 Jun 2018 Published: 10 Jul 2019

Abstract

Background: Virtual Reality (VR) as a computer technology that simulating real environments and situations in which the user can interact with the environment in the way that he/she is in the real world. It can create sensory knowledge, such as touch, smell, sound, and vision. This technology can be applied in a variety of fields. The main goal of this paper is to provide information about the use of VR methods in the treatment and rehabilitation of patients with chronic conditions, to the best of our knowledge, this is a comprehensive study on this topic.

Methods: We searched the MEDLINE database through PubMed in April 2016 for retrieving published papers from January 2001 to December 2015. From 117 retrieved papers, 52 had the inclusion criteria, and their full texts were accessible. Data were extracted from papers based on following items: the name of the first author, year of the study, applied VR method, type of condition and disease, number of subjects that participated in the study, and finally the status of success and failure of VR application. Data were analyzed using descriptive analysis.

Results: Results of the reviewed investigations have been considered in two main categories including treatment oriented papers (n=38, 73%) while twenty of these papers have been conducted on phobias (53%); also, there are rehabilitation-oriented experiments (n=14, 27%) while thirteen of these papers have been performed on stroke. In 40 papers (77%), the VR technology application reported proper and in 11 papers (21%) the application of VR resulted in relatively proper outcomes and only there is a work (2%) with poor results for VR intervention.

Conclusion: VR technology has been increasingly used in recent years for treatment and rehabilitation purposes among patients affected by chronic conditions in order to motivate them for more successful management.

Keywords: Virtual reality, Chronic disease, Therapeutic, Rehabilitation

Cite this article as: Hajesmaeel Gohari S, Gozali E, Niakan Kalhori ShR. Virtual reality applications for chronic conditions management: A review. Med J Islam Repub Iran. 2019 (10 Jul);33:67. https://doi.org/10.34171/mjiri.33.67

Introduction

Virtual Reality (VR) is a computer technology simulating real environments and situations in which the user can interact with the environment in the way that he/she is in the real world. It can create sensory knowledge, such as touch, smell, sound, and vision. This technology can be applied in a variety of fields. The main goal of this paper is to provide information about the use of VR methods in the treatment and rehabilitation of patients with chronic conditions, to the best of our knowledge, this is a comprehensive study on this topic.

1. Department of Health Information Management, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran

↑What is “already known” in this topic:

Chronic diseases are well known as threats to population health, economic status, and quality of life in communities due to the long-lasting nature of these conditions. Control and management of these conditions are very important. Use of new technologies such as Virtual Reality (VR) may support patients’ improvement in care steps and health providers to manage chronic diseases more easily and successfully. We know the available technology of VR applied for chronic disease management distinctly.

—What this article adds:

This study reviewed applied VR technology for chronic disease more comprehensively; furthermore, this study addressed VR applications based on categories of chronic disease according to their entity and degree of success more specifically for chronic disease treatment and rehabilitation. Result of this study can be useful for the healthcare providers in decision making to choose VR in the management of these conditions.

Conflicts of Interest: None declared
Funding: None
Virtual reality application for chronic conditions

sight, touch, hearing, and smell (1-3).

VR has several methods such as Window on World Systems (WoW) also called desktop VR that using computer monitor to display 3D environment, Video Mapping that is a type of WoW that show user’s body interaction with the world (4), Immersive Systems that often use Head-Mounted Display (HMD) (5), Telepresence that uses a robot to links remote sensors in the real world with the senses of a human operator (6, 7) and Mixed Reality or Augmented Reality uses Telepresence and VR simultaneously together (8). VR technologies can be exploited in various fields such as industry for product design and manufacturing (9), and in the healthcare too (10). VR is used in numerous healthcare areas such as treatment and rehabilitation and in several conditions for example brain injuries (11), psychiatry disorders (12), obesity (13), smoking (14), alcoholism (15). Totally we have named different applications in health care as control which composed of prevention, treatment, and rehabilitation based on the World Health Organization definition (16).

A chronic condition is a disorder that persists for a long time. There are four main categories of chronic conditions, including cardiovascular diseases, cancers, chronic respiratory diseases, and diabetes (17). Other examples of chronic conditions are addiction, chronic pain syndromes, obesity, and psychiatric disorders. The significance of timely treatment and rehabilitation of patients with chronic conditions is high due to the long-lasting nature of these conditions. Effectiveness (18, 19), inexpensive (20), improvement (21), able to contribute to the assessment of therapeutic effect (11) have been addressed in different studies related to the proper usages of VR technology. According to the available reports related to VR effectiveness investigation, there are several studies stated phrases such as further study need (22, 23), may enhance (24), used to display relatively proper and did not increase motivation (25) or even phrases notifying VR applications display not proper results.

Use of technologies can help to create greater incentives in patients with chronic conditions for self-management (26). In this study, management refers to the ability of patients for self-management in chronic conditions. Self-management can increase the incentive of patients in the management of their conditions by improving health literacy and behavior of them (26). Several VR technologies such as HMD (Head-Mounted Display), game, hand wrist device, video recording, and other computer applications are used to manage chronic conditions either through enhancing patients’ self-management or empowering health care provider to offer certain care to affected patients by specific conditions. Specific reviews have been conducted regarding VR application in special areas of chronic disease, for example, brain injuries (27), psychiatric disorders (2), and also in the education field (28, 29); however, there is no report to review VR application in the management of chronic diseases more comprehensively.

Due to high prevalence and burden of chronic diseases and related risk factors, and great levels of imposed cost especially in low level economic status and consequently their importance in communities’ quality of life, control, and management of these conditions is very important (30). It is useful for healthcare providers to understand the applications of VR in management of these conditions as new found technology for long-lasting treatment and rehabilitation interventions which are essential in care process nowadays (31, 32).

This paper sought to fulfill this research gap through review of papers in the field of VR’s applications for the following aims: to determine chronic conditions management using VR method, type of chronic condition managed by VR technology, the quality of VR usages for studied interventions, types of VR based interventions, and chronological analysis of VR based interventions based on condition type for treatment and rehabilitation purposes.

Methods

This is a review study. We searched the MEDLINE database through PubMed in April 2016 for retrieving published papers from January 2001 to December 2015. We used three separated keywords for searching such as (Virtual Reality Exposure Therapy OR Virtual Reality Immersion Therapy OR Virtual Reality Therapy) AND (Chronic Disease OR Chronic Illness OR Chronically Ill) AND (Medical Informatics Applications), (Virtual Reality Exposure Therapy OR Virtual Reality Immersion Therapy OR Virtual Reality Therapy) AND (Chronic Disease OR Chronic Illness OR Chronically Ill), (Virtual Reality Exposure Therapy) AND “Medical Informatics Applications”[Mesh].

Inclusion criteria were original papers that use VR applications for chronic conditions management. Non-English papers, not available full text, and other types of papers such as conference abstracts, review papers, letters were excluded.

All retrieved records (n=117) imported into Endnote. After removing duplicated records (n=36), remained cases were assessed by two authors independently using titles and abstracts. Disagreements were discussed and resolved by consensus in a joint meeting. Afterward, we removed other 23 records because they were not related to chronic conditions; there were neither research paper nor interventional study. For evaluating final papers, we needed to read the fulltext of papers; unfortunately, we couldn’t access full texts of 6 papers (Fig. 1). They were removed too, and the present study has been conducted based on the remained papers. According to the type of this review study, data were gathered from papers based on tabular feature analysis and chronological applications.

The final list of papers was evaluated by two authors independently using full texts. Data were extracted from papers based on six checklist items including the name of the first author, year of the study, applied VR methods, type of condition and disease, number of subjects that participated in the study, and finally the status of success and failure of VR application (Tables 1, 2). Data were analyzed using descriptive analysis.

Results

Of 52 final papers, twenty-six papers reported VR applications for psychiatric disorders such as phobia, schiz-
ophrenia and to treat these syndromes by VR, 14 papers on the rehabilitation of injuries due to stroke and Multiple Sclerosis. Other papers have been done on several conditions such as obesity, chronic pains, diabetes, and addiction.

Year oriented papers analysis

During 2001-2005, 13 papers were in the field of treatment; most of them were in the treatment of various phobias (n=11), but no paper was in the field of rehabilitation. Between 2006 and 2010, 18 papers were in the field of treatment that 6 of them were in the treatment of various phobias, and 4 rehabilitation papers were in the stroke field.

Between 2011 and 2014, 7 papers were in the field of treatment that 2 of them were in the treatment of various phobias, and 10 papers were in the field of rehabilitation that most of them were in the stroke field (n=9).

Treatment-oriented papers analysis

Twenty papers have been done on phobia disorders (flying phobia (n=4), agoraphobia (n=5), acrophobia (n=2), driving phobia (n=1), social phobia (n=1), cockroach phobia (n=2), public speaking phobia (n=2), arachnophobia (n=1)), other papers have been conducted on several conditions such as periodontitis, binge eating disorder, schizophrrenia, post-traumatic stress, alcoholism, smoking, pruritus, neck pain, obesity, diabetes, fibromyalgia, cervical

Table 1. Characteristics of reviewed papers in the area of chronic disease treatment

<table>
<thead>
<tr>
<th>Paper</th>
<th>Year of study</th>
<th>Applied VR method</th>
<th>Type of Condition</th>
<th>Number of subjects</th>
<th>Status of Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>Banos RM, et al (33)</td>
<td>2001</td>
<td>Head-Mounted Display (HMD)</td>
<td>Flying phobia</td>
<td>Four</td>
<td>P</td>
</tr>
<tr>
<td>Hoffman HG, et al (47)</td>
<td>2001</td>
<td>Icy 3-D virtual canyon</td>
<td>Periodontitis</td>
<td>Two</td>
<td>R</td>
</tr>
<tr>
<td>Jang DP, et al (49)</td>
<td>2002</td>
<td>Realistic virtual environment based on PC</td>
<td>Acrophobia</td>
<td>One</td>
<td>P</td>
</tr>
<tr>
<td>Walshe DG, et al (51)</td>
<td>2002</td>
<td>Head-Mounted Display (HMD), Game</td>
<td>Driving phobia</td>
<td>Fourteen</td>
<td>P</td>
</tr>
<tr>
<td>Wiederhold BK, et al (52)</td>
<td>2002</td>
<td>Liquid Image Head-Mounted Display (HMD)</td>
<td>Flying phobia</td>
<td>Thirty</td>
<td>P</td>
</tr>
<tr>
<td>Roy S, et al (55)</td>
<td>2003</td>
<td>VirttoolsDev 2.0 Education</td>
<td>Social phobia</td>
<td>Not reported</td>
<td>P</td>
</tr>
<tr>
<td>Wiederhold BK, et al (56)</td>
<td>2003</td>
<td>Head-Mounted Display (HMD)</td>
<td>Flying phobia</td>
<td>Thirty</td>
<td>P</td>
</tr>
</tbody>
</table>

P=proper, R=relatively proper, N=not proper

http://mjiri.iums.ac.ir

Med J Islam Repub Iran. 2019 (10 Jul); 33.67.
Virtual reality application for chronic conditions

<table>
<thead>
<tr>
<th>Table 1: Ctd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Botella CM, et al (57)</td>
</tr>
<tr>
<td>Tichon J, et al (58)</td>
</tr>
<tr>
<td>Chan CL, et al (61)</td>
</tr>
<tr>
<td>Wallach HS, et al (62)</td>
</tr>
<tr>
<td>Clemente M, et al (63)</td>
</tr>
<tr>
<td>Leibovici V, et al (64)</td>
</tr>
<tr>
<td>St-Jacques J, et al (25)</td>
</tr>
<tr>
<td>Coons MJ, et al (67)</td>
</tr>
<tr>
<td>Dunser A, et al (68)</td>
</tr>
<tr>
<td>McLay RN, et al (69)</td>
</tr>
<tr>
<td>Pericot-Valverde I, et al (71)</td>
</tr>
<tr>
<td>Sarig-Bahat H, et al (72)</td>
</tr>
<tr>
<td>Malbos E, et al (35)</td>
</tr>
<tr>
<td>Rus-Calafell M, et al (74)</td>
</tr>
<tr>
<td>Williams GC, et al (76)</td>
</tr>
<tr>
<td>Mortensen J, et al (77)</td>
</tr>
<tr>
<td>Thomas JG, et al (78)</td>
</tr>
</tbody>
</table>

kinematics. In fifteen papers, HMD (Head-Mounted Display) technology was used; in 5 papers games were utilized and in the rest of reports, several technologies such as CET (Cue Exposure Therapy) and VRGET (Virtual Reality Graded Exposure Therapy) were applied (Table 1).

Rehabilitation oriented papers analysis

Thirteen papers have been performed on stroke and one paper on multiple sclerosis. In this field, papers have been used games and real-world video recording as two more used technologies, and hand-wrist assistant rehabilitation device, hand exoskeleton rehabilitation robot, semi-immersive workbench (Table 2).

VR application based on certain condition analysis

For the treatment of flying phobia (n=4 (100%)), agoraphobia (n=3 (60%)), acrophobia (n=1 (50%)), driving phobia (n=1 (100%)), cockroach phobia (n=1 (50%)), public speaking (n=1 (50%)), binge eating disorder (n=1 (100%)), alcoholism (n=1 (100%)) and neck pain (n=1 (100%)) HMD technology has been used. For the treatment of arachnophobia, pruritus, fibromyalgia and cervical kinematics (n=1 (100%)) game technology has been used. For rehabilitation of stroke, hand wrist device (n=4 (31%)), game (n=4 (31%)), application (n=3 (23%)) and video recording (n=2 (15%)) were used.

VR application success analysis

In 40 out of 52 papers, the result of VR technologies application was proper; in 11 papers, it was relatively proper, and only in 1 paper it was not (Table 3).

VR based interventions analysis

In twenty-three papers, the risk interface intervention in 17 papers, body movement intervention, in 5 papers, concentration improvement intervention and in 7 papers, diet management intervention was used (Table 4). In the risk interface intervention, patients are encountered to the factors that cause fear by using HMD, game, and other applications that set on personal computers. In the body movement intervention, for the rehabilitation of patients that suffer from a disability to move their body part or have pain, use the VR technologies such as game, hand wrist device, HMD and video recording can help to move body parts. In the concentration improvement intervention, the games and other applications are used to reduce pain and increase the sense of the presence of schizo-

http://mjiri.iums.ac.ir
Table 2. Characteristics of reviewed papers in the area of chronic disease rehabilitation

<table>
<thead>
<tr>
<th>Paper</th>
<th>Year of the study</th>
<th>Applied VR method</th>
<th>Type of Condition</th>
<th>Number of subjects</th>
<th>Status of Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>Godfrey SB, et al (82)</td>
<td>2010</td>
<td>NJIT-RAVR system and the NJIT Track-Glove system</td>
<td>Stroke</td>
<td>Four</td>
<td>P</td>
</tr>
<tr>
<td>Cameirao MS, et al (41)</td>
<td>2011</td>
<td>Rehabilitation Gaming System</td>
<td>Stroke</td>
<td>Forty four</td>
<td>R</td>
</tr>
<tr>
<td>Subramanian SK, et al (84)</td>
<td>2011</td>
<td>virtual walking training program using a real-world video recording</td>
<td>Stroke</td>
<td>Fourteen</td>
<td>P</td>
</tr>
<tr>
<td>Cho KH, et al (40)</td>
<td>2013</td>
<td>Treadmill training based real-world video recording (TBRVR)</td>
<td>Stroke</td>
<td>Thirty</td>
<td>P</td>
</tr>
<tr>
<td>Jordan K, et al (42)</td>
<td>2013</td>
<td>Game</td>
<td>Stroke</td>
<td>Thirteen</td>
<td>P</td>
</tr>
<tr>
<td>Saleh S, et al (85)</td>
<td>2013</td>
<td>MRI-compatible recording gloves</td>
<td>Stroke</td>
<td>Fifteen</td>
<td>P</td>
</tr>
<tr>
<td>Eftekharsadat B, et al (86)</td>
<td>2014</td>
<td>postural stability training program (PST) using the Biodex Balance System SD</td>
<td>Multiple sclerosis</td>
<td>Thirty</td>
<td>P</td>
</tr>
</tbody>
</table>

P=proper, R=relatively proper, N=not proper

Table 3. The frequency of the degree of success for various VR technologies applications in different chronic condition support

<table>
<thead>
<tr>
<th>Conditions</th>
<th>Proper (n(%))</th>
<th>Relatively proper (n(%))</th>
<th>Not proper (n(%))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flying phobia</td>
<td>4(100)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Agoraphobia</td>
<td>3(60)</td>
<td>2(40)</td>
<td>0</td>
</tr>
<tr>
<td>Acrophobia</td>
<td>1(50)</td>
<td>1(50)</td>
<td>0</td>
</tr>
<tr>
<td>Driving phobia</td>
<td>1(100)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cockroach phobia</td>
<td>2(100)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Public speaking phobia</td>
<td>2(100)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Arachnophobia</td>
<td>0</td>
<td>0</td>
<td>1(100)</td>
</tr>
<tr>
<td>Periodontitis</td>
<td>0</td>
<td>1(100)</td>
<td>0</td>
</tr>
<tr>
<td>Binge eating disorder</td>
<td>0</td>
<td>1(100)</td>
<td>0</td>
</tr>
<tr>
<td>Schizophrenia</td>
<td>2(66.6)</td>
<td>1(33.4)</td>
<td>0</td>
</tr>
<tr>
<td>Post-traumatic stress disorder</td>
<td>3(100)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Alcoholism</td>
<td>2(100)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>General phobia</td>
<td>2(100)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Social phobia</td>
<td>1(100)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Smoking</td>
<td>1(100)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Neck pain</td>
<td>1(100)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Diabetes</td>
<td>1(100)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Fibromyalgia</td>
<td>1(100)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cervical kinematics</td>
<td>1(100)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pruritus</td>
<td>0</td>
<td>1(100)</td>
<td>0</td>
</tr>
<tr>
<td>Obesity</td>
<td>1(50)</td>
<td>1(50)</td>
<td>0</td>
</tr>
<tr>
<td>Stroke</td>
<td>10(77)</td>
<td>3(23)</td>
<td>0</td>
</tr>
<tr>
<td>Multiple sclerosis</td>
<td>1(100)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>40</td>
<td>11</td>
<td>1</td>
</tr>
</tbody>
</table>

Discussion
The aim of this study was to investigate the applications of VR in the management of chronic diseases. Results of this study showed that VR could be used as a technology in diet management intervention, HMD and applications are used to help the patients change their high-risk behavior by showing them the high-risk situation and methods to manage this situation.

http://mjiri.iums.ac.ir
Med J Islam Repub Iran. 2019 (10 Jul); 33.67.
to treat and rehabilitate chronic diseases. Most of the treatment-oriented papers have been done on phobias. Phobia is one of the mental illnesses in which the person fears from position, place, and object without a logical reason. Sometimes this irrational fear makes trouble for people in their social relations. For the treatment of this disorder, patients should encounter to the factor that causes fear. Nowadays, the use of VR technology can help to the treatment of these patients. Since 2001, HMD technology has been numerous used and continued until 2011, and the most application of this technology has been for the treatment of various types of phobia (33-36). HMD technology using glasses that are placed on the head makes feel of the real world for the patients. This technology makes the patients encounter particular situations that cause fear with the use of these glasses in safe environment, and since the patient knows that the world in front of him is virtual, he can control his fear easily (35). From 2002, computer games mainly were used in order to treat a variety of phobias (20, 25). In phobia diseases, the visual sense has been mostly used with at least one of the sense of touch and hearing.

Most of the rehabilitation oriented papers have been done on stroke. Stroke is a disease caused by disruption of blood supply to a part of brain tissue. Complications of stroke are different depending on which part of the brain’s function has been disrupted. Paralysis is one of the most common complications of this condition. Rehabilitation programs began shortly after stroke occurrence through magnetic stimulation of the brain or physiotherapy. Physiotherapists are important part of team who can improve the function of the paralyzed members through training special exercises to the patients (37, 38). Today, with the advancement of technology, use of VR for stroke patient rehabilitation can be very useful in order to improve patient ability to learn how to work out and get used to it; video recording is the most useful tool designed by VR technology to fulfill this requirement (39). Since 2013, video recording has been used to rehabilitate stroke patients (39, 40). This technology was an innovation providing screenshots that were projected into the screen placed in front of the patient; at the same time, auditory input, which recorded real-sound during real-world video recording, was broadcasting. This technology is used in the field of rehabilitation of stroke through training balance and gait.

The advent of three-dimensional images technology has been caused to more use of VR in the rehabilitation area of stroke patients by producing computer games in recent years. Computer games reached to the peak of use for patients’ rehabilitation who affected by stroke until 2014 (11, 41, 42). Computer games can enhance body movement of patients who suffer from stroke by enforcing them to move their bodies to get more points. Stroke patients mostly use touch sense with at least one of the sense of hearing and vision.

In 40 out of 52 papers, the result of VR technologies application was proper; in 11 papers it was relatively proper and only in 1 paper it was not. The results of VR applications for the treatment various types of phobia were proper; however, it was relatively proper, for the rehabilitation of stroke-affected patients. This might be due to this fact that in the process of application of VR for the treatment of phobia, patients encounter frightening factors promptly. This treatment process is simpler requiring less attention and guidelines of health care providers in a short period of care. While, this is not the same for rehabilitating stroke affected patients; that is, in order
to obtain the successful result of VR application for rehabilitation stroke patients, the process of care is much more complex designed in several sessions and a longer period of time with specific supervision of nurses and even physiotherapists strongly required. It seems that preparing all required elements and factors for rehabilitation stroke patients using VR technology is more formidable rather than phobia treatment purpose by this new technology. Meanwhile, the results of other review papers are in line with this review, too (43, 44).

Before 2010, most of the studies in the field of VR had been done on phobia disorders; however, after 2010, they have been mainly focused on stroke disorder. This might be due to the high prevalence of stroke in recent years, and it became the second cause of death and third cause of disability in the world (45). Therefore, attention to the rehabilitation of stroke patients and returning them to their normal lives become a priority.

The Chronic Care Model (CCM) as a framework to the management of chronic diseases has basic elements to improve health care at community, organization, practice, and patient level (46). This model has 6 elements such as community, the health system, self-management support, delivery system design, decision support, and clinical information systems (46). According to this model’s elements, VR could be used in the management of chronic diseases effectively as it may provide service based on applied guidelines to the patients who do not have access to the healthcare providers, emphasis on the role of patients in managing their conditions. Due to these VR capabilities to improve healthcare, the use of this technology might be increased in routine health care delivery.

According to the results of this study, application of VR in the management of disease other than chronic diseases with similar treatment and rehabilitation intervention are suggested.

Conclusion

VR technology is increasingly in progress to treat and rehabilitate chronic conditions, and it will be used for more conditions gradually; in other words, its application domain is growing wider steadily.

Conflict of Interests

The authors declare that they have no competing interests.

References

17. WHO. Noncommunicable diseases. [cited April 5, 2016].

http://mjiri.iuums.ac.ir
Med J Iran Repub Iran. 2019 (10 Jul); 33:67.
Virtual reality application for chronic conditions

