
 
Original Article   
http://mjiri.iums.ac.ir    
Medical Journal of the Islamic Republic of Iran (MJIRI) 

Med J Islam Repub Iran. 2020(13 Jul);34.78. https://doi.org/10.47176/mjiri.34.78  

 

______________________________ 
Corresponding author: Dr Mohammad Ali Mansournia, ansournia_m@sina.tums.ac.ir 
 

1. Department of Epidemiology and Biostatistics, School of Public Health, Tehran 
University of Medical Sciences, Tehran, Iran 

2. Reproductive Endocrinology Research Center, Research Institute for Endocrine 
Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran 

 
 

 
↑What is “already known” in this topic: 
The increase in the use of Bayesian analysis in the medical 
researches has made it essential to present its complex concepts 
in a lucid language. To many nonexpert users, their 
computationally-intensive approaches have the form of a 
“black box”.   
 
→What this article adds: 

This study aimed at offering a common sense description of 
Bayesian inference through an intuitive approach and 
providing some illuminating examples for medical 
investigators and nonexperts.  
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Abstract 
    Background: The Bayesian methods have received more attention in medical research. It is considered as a natural paradigm for 
dealing with applied problems in the sciences and also an alternative to the traditional frequentist approach. However, its concept is 
somewhat difficult to grasp by nonexperts. This study aimed to explain the foundational ideas of the Bayesian methods through an 
intuitive example in medical science and to illustrate some simple examples of Bayesian data analysis and the interpretation of results 
delivered by Bayesian analyses. In this study, data sparsity, as a problem which could be solved by this approach, was presented 
through an applied example. Moreover, a common sense description of Bayesian inference was offered and some illuminating 
examples were provided for medical investigators and nonexperts.  
   Methods: Data augmentation prior, MCMC, and Bayes factor were introduced. Data from the Khuzestan study, a 2-phase cohort 
study, were applied for illustration. Also, the effect of vitamin D intervention on pregnancy outcomes was studied.  
   Results: Unbiased estimate was obtained by the introduced methods.  
   Conclusion: Bayesian and data augmentation as the advanced methods provide sufficient results and deal with most data problems 
such as sparsity. 
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Introduction 
Bayesian methods, dating back to the 18th century, were 

introduced by the English statistician and philosopher 
Thomas Bayes in an essay released after his death (1, 2). 
Its application faced with some obstacles and controver-
sies such as computational obstacles and prior selection 
challenge through decades (3-6). It starts with questing the 
degree of belief related to a concept and then updating it 
with the available evidence. The concept of Bayesian in-
ference is intuitive as something you may be faced with in 

everyday life, which made it popular in all aspects of sci-
ence (7). During  the last few years, Bayesian application 
has increased drastically, offering pragmatic solutions for 
problems that a traditional approach fails to deal with (8). 
For instance, biased data may occur in some circumstanc-
es, including data sparsity, presence of outliers, censoring, 
and confounding variable selection.  Bayesian methods 
have gained huge popularity due to the flexibility of mod-
elling through a computer software to deal with these is-

 [
 D

O
I:

 1
0.

47
17

6/
m

jir
i.3

4.
78

 ]
 

 [
 D

ow
nl

oa
de

d 
fr

om
 m

jir
i.i

um
s.

ac
.ir

 o
n 

20
25

-0
5-

17
 ]

 

                               1 / 6

https://crossmark.crossref.org/dialog/?doi=10.34171/mjiri.34.78
https://orcid.org/0000-0003-3343-2718
http://dx.doi.org/10.47176/mjiri.34.78
http://mjiri.iums.ac.ir/article-1-6079-en.html


    
 Bayesian methods in medical sparse data 

 
 

 http://mjiri.iums.ac.ir 
Med J Islam Repub Iran. 2020 (13 Jul); 34:78. 
 

2 

sues. Data sparsity occurs in the case of rare events or 
when some values of the predictor are associated with 
only 1 outcome value called separation (9); eg, when all 
cases of macrosomia occurred in women with gestational 
diabetes mellitus. In this case, estimated measures of as-
sociation are subjected to bias with very big values and 
extraordinary wide ranges of 95% CI. The Bayesian ap-
proach can be considered as a remedial tool in this case 
(10-13).  

Conceptually, now is not the era of starting everything 
from scratch; you may have “prior” knowledge about an 
investigation, as you know the probability of catching a 
cold in winter is higher. In this case, the question is to 
estimate a parameter, here probability of catching a cold, 
so you will first start collecting data to find the “likeli-
hood” of catching a cold by objective evidence.  

If you are a frequentist, you are done by only analyzing 
the obtained data ignoring any prior information. Contrary 
to frequentist approach, Bayesian method accounts the 
prior knowledge in the process of analysis to estimate 
“posterior” knowledge of the probability of catching cold. 

Statistically speaking, by considering a prior distribu-
tion for the parameter of interest, the likelihood of data 
and Bayes rule, you can estimate the posterior distribution 
of the parameter. 

 
Bayes Rule: Posterior distribution ∝ prior distribution× 

likelihood of data 
In this study, it was aimed to provide a gentle technical 

introduction with an application to Bayesian inference 
useful for researchers in the medical fields. First, a short 
overview is presented regarding the history, concept, and 
definition of some jargons in this area of statistics and 
then its application is illustrated through an illuminating 
example along with its Stata software code to show how 
these ideas can be put into practice. Here, it is tried to 
make the concepts more tangible for nonexperts. Also, a 
neat catalogue of references in case readers are more in-
terested in the bigger picture, more details, or a more ad-
vanced coverage of the topic is provided. 

 
Methods 
Bayesian approach in data analysis 
Since its inception, there have been vigorous debates 

regarding the application of the Bayesian approach as an 
alternative to classical methods (4, 6, 14). The fundamen-
tal idea in Bayesian inference is to combine the prior 

knowledge and the available evidence. One can update 
one’s knowledge when additional information becomes 
available. For example, you want to know the probability 
of breast cancer in a seemingly healthy woman (Fig. 1). 
Of course, the probability would be different if she were 
tested positive on a screening test. Bayes rule takes this 
extra information into account and shows how it should be 
evaluated. In this case, one would like to calculate poste-
rior probability of having breast cancer given the positive 
test. Bayes rule combines the prior information of the pos-
itive test with the likelihood of a positive test given having 
the disease as below:  

P(A): Probability of having the disease = 2% 
P(B) = Probability of positive test = sum of probabilities 

of all independent ways to achieve a positive test = proba-
bility of true positive + probability of false positive = 
(having cancer × true positive) + (not having cancer × 
false positive) = (0.02 × .8) + (0.98 × 0.15) = 0.163 

P (B | A) = probability of positive test given having the 
disease = 80% 

P (A | B) = P (B | A) P(A)/P(B) = (.8×.02)/0.163 = 
9.8%. 

It shows that considering the prior information of the 
positive test increases the probability of diagnostic posi-
tive from 2% to 9.8%. 

Calculating the posterior measures by classical Bayes 
rule was not that much straightforward, and in some cases 
needed intensive computation, which is why it was set 
aside for a long time until the advent of the computer (15). 
In this case, instead of calculating the posterior, methods 
were introduced to simulate it. The posterior simulation 
methods were evolved by the emergence of the MCMC 
approach in the 1990s, which is actually a computer-
driven sampling approach. In this study, the mechanism of 
MCMC sampling was represented with Metropolis-
Hastings algorithm through an example (Appendix). Gen-
erally speaking, prior information is also a key part of 
Bayesian methods and illustrates the knowledge about an 
uncertain parameter of estimate that is combined with the 
likelihood of data to provide the posterior measure (15, 
16). Robust Bayesian analysis showed how much Bayesi-
an answers are sensitive to uncertain inputs. Under certain 
conditions, which is large sample size, the prior is domi-
nated by the likelihood of data, so evaluation of the true 
prior may not be required. In this regard, the prior effect is 
consistent with a large set of informative and diffuse pri-
ors. On the other hand, a Bayesian method that utilizes 

 
Fig. 1. Diagram represents sensitivity, specificity, true positive, and true negative 
 

 [
 D

O
I:

 1
0.

47
17

6/
m

jir
i.3

4.
78

 ]
 

 [
 D

ow
nl

oa
de

d 
fr

om
 m

jir
i.i

um
s.

ac
.ir

 o
n 

20
25

-0
5-

17
 ]

 

                               2 / 6

http://dx.doi.org/10.47176/mjiri.34.78
http://mjiri.iums.ac.ir/article-1-6079-en.html


 
R. Bidhendi Yarandi, et al. 

 

 
 

 http://mjiri.iums.ac.ir 
Med J Islam Repub Iran. 2020 (13 Jul); 34.78. 
 

3 

weakly informative priors to quantify the sensitivity of 
parameters to sparse data was proposed.  Parameter esti-
mates will be shrunk to the prior mean in case of the 
sparseness. In practice, to check the influence of prior 
distributions, the sensitivity analysis can be applied, which 
compares the posterior inferences under various reasona-
ble selections of prior distributions (17-20). The interpre-
tation of posterior results can also be very straightforward. 
Posterior credible interval and Bayes factor are introduced 
instead of 95% confidence interval and p value. Also, 95% 
credible interval shows there is a probability of 0.95 that 
Bayesian calculated parameter of interest is within this set, 
which is precisely like what is sometimes wrongly inter-
preted as frequentist estimates. While true frequentist in-
terpretation of 95% CI is the interval which will contain 
the true value on 95% of occasions if a study were repeat-
ed many times using samples from the same population. 

 
Data augmentation prior approach 
An easy and more tangible method of data augmentation 

prior (DAP) was introduced as an alternative to Bayesian 
methods (10-12). Its concept is truly straightforward. 
First, translate prior to a so-called pseudo data, and then 
add this amount of information to the real dataset; then, 
ordinary methods of calculating parameters of interest can 
be applied. Contrary to the Bayesian approach whose con-
cept is like a black-box and in some cases takes much time 
to gain results, DAP provides a more understandable and 
applicable estimation process. We presented the result of 
an illustrative example by DAP method as well, and the 
results are virtually identical (21). 

Below proved an illustration of DAP method by a sim-
ple example:  

Consider that in a clinical trial LnOR (Variance of 
lnOR) for an event were estimated as LnOR = 2.0 (Vari-
ance of lnOR =1.0). 

The prior information for OR with 95% limits between ଵସ 
and 4 was obtained from a meta-analysis. Mean and vari-
ance of prior for Ln (OR) are estimated as follow: ݎ݅ݎ	݊ܽ݁݉	݊ܮ(ܱܴ) = =ݏݐ݈݅݉݅	%95	݂	݁݃ܽݎ݁ݒܽ ݊ܮ) ቀ14ቁ + 2((4)݊ܮ = 0 

=(ܴܱ)݊ܮ	݁ܿ݊ܽ݅ݎܽݒ	ݎ݅ݎ  ( =ଶ(ݏݐ݅݊ݑ	݊݅ݏ݅ݒ݁݀	݀ݎܽ݀݊ܽݐݏ	݊݅	݈ܽݒݎ݁ݐ݊݅	݂	ℎݐܹ݀݅ݏݐ݅݊ݑ(ܴܴ)݊ܮ	݊݅	݈ܽݒݎ݁ݐ݊݅	݂	ℎݐܹ݀݅ (ቚ݊ܮ ቀ14ቁ − ቚ2(4)݊ܮ ∗ 1.96 )ଶ = 0.5 
 
Therefore, a normal prior with 0 mean and 0.5 variance 

was defined. The contribution of prior and data infor-
mation to estimate posterior mean and variance could be 
assessed through their inverse variances equaling 	 ଵ			 = ଵ.ହ = 2  and ଵ	௩		ைோ = ଵଵ = 1 , 
showing that prior information dominated the data infor-
mation by nearly 2 times. Posterior mean and variance for 
Ln (OR) could be estimated as the following weighted 

averaging rule of thumb; posterior mean for 
 	݈݊(ܱܴ) = ಾೌ			ುೝೝೇೌೝೌ		ೝೝା ೀೃೇೌೝೌ		ಽೀೃ	భೇೌೝೌ		ೝೝା భೇೌೝೌ		ಽೀೃ	 = బబ.ఱାమభభబ.ఱାభభ =		0.67,  
 
posterior variance for 
 
 ݈݊(ܱܴ) ≈ ଵ	 భೇೌೝೌ		ೝೝା భೇೌೝೌ		ಽೀೃ	 = ଵభబ.ఱାభభ = 0.33,  
 
and 95% posterior CI for 
 	ܱܴ ݔ݁≈ ቀݎ݅ݎ݁ݐݏ	݉݁ܽ݊ ± 1.96 ∗ భమቁ(݁ܿ݊ܽ݅ݎܽݒ	ݎ݅ݎ݁ݐݏܲ) = ݔ݁ ቀ0.67 ±1.96 ∗ (0.33)భమቁ = ,0.47−)ݔ݁ 1.80) = (0.63, 11.94)	.  
 
The width of CI obtained from this method was narrow-

er than the ordinary approach. The “Penlogit” is a Stata 
command for DAP (22). 

 
Bayes factor approach 
Bayes factor is a Bayesian approach to hypothesis test-

ing. It measures the strength of evidence by providing a 
number for quantifying the evidence in favor of a scien-
tific hypothesis. To clarify more, Bayes factor compares 
the relative likelihood given to both null and alternative 
hypotheses, while p value  is estimated based on just the 
null hypothesis (H0) (23). By Bayes rule, posterior odds in 
favor of H0 would be the prior odds multiplied by likeli-
hood ratio, namely, the Bayes factor, where Bayes factor 
equaled the ratio of likelihood of data under the null hy-
pothesis to the likelihood of data under the alternative 
hypothesis. In fact, prior odds are transformed to posterior 
odds via Bayes factor, which presents how a belief is 
changed by data. In other words, Bayes factor is the evi-
dence for the alternative hypothesis versus the null hy-
pothesis. Bayes factor equal 1 provides no evidence, 1/3 – 
1: anecdotal evidence for H1, 1/3 – 1/10: moderate evi-
dence for H1, 1/10 – 1/30: strong evidence for H1, 1/30 – 
1/100: very strong evidence for H1, < 1/100: extreme evi-
dence for H1 (23-26).  

 
Illustrative example 
Effect of vitamin D intervention on neonatal death: Data 

were extracted from the Khuzestan study, a 2-phase cohort 
study. The effect of vitamin D intervention on pregnancy 
outcomes was studied, and the details of the study proto-
col have previously been published (27). The contingency 
table shows a cell has only one observation, which is sub-
jected to data sparsity. In this case, the ordinary logistic 
regression fails to truly calculate the odds ratio and 95% 
CI. The big odds ratio of neonatal death and the unusually 
wide confidence interval represent the bias estimation of 
the measures OR = 125 (95% CI: 15.8 to 1000). The data 
were reanalyzed by the Bayesian and DAP approaches 
with various priors, ranging from strong (low variance) to 
weak prior information for logistic regression coefficient. 

A common distribution for regression coefficient is 
normal distribution (28). The mean of 0 and variance of 
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0.5 were considered to 10 provide various degree of be-
liefs regarding the magnitude of the relationship between 
exposure and disease.  

 
Results 
Table 1 shows the median of prior (95% prior limits). 

Results revealed a reasonable shrink of ORs and 95% 
credible intervals, especially for stronger prior (Table 2), 
which is in line with the literature (29, 30). The results for 
Bayesian and DAP approaches are almost the same. In 
addition, to test the null hypothesis (H0: Beta = 0), Bayes 
factor approach was applied, and the result showed that 
the evidence did not worth more than a bare mention in 
favor of H0. Therefore, vitamin D intervention significant-
ly decreased the odds of neonatal death. Stata codes for 
the Bayesian and DAP approaches are available in the 
Appendix. 

 
Discussion 
The volume of literature published on Bayesian infer-

ence has proved its popularity among medical studies (31-
41).  In this study, it was aimed to present some Bayesian 
approaches in an intuitive language for clinicians. Bayesi-
an and DAP methods were run on data of Khuzestan co-

hort study, which were subjected to sparse data problem to 
illustrate the application. DAP and MCMC both provided 
almost the same result, while generally DAP is a more 
understandable and convenient method, especially for 
nonexperts (42). Generally, Bayesian and data augmenta-
tion as the advanced methods provide sufficient results, 
unbiased estimates, and deal with most data problems 
such as sparsity when traditional frequentist method fails.   

 
Conclusion 
This study demonstrated the foundational concepts of 

Bayesian inference through an intuitive illustration for 
nonexperts.    
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Table 1. Different classes of Prior information with plausible ranges: median (95%limit) 
Priors Exact prior median OR 95% prior limit OR 
Normal (0, 0.5) 1 (1/4, 4) 
Normal (0, 1) 1 (1/7, 7) 
Normal (0, 1.38) 1 (1/10, 10) 
Normal (0, 2) 1 (1/16, 16) 
Normal (0, 10) 1 (1/492, 492) 
 
Table 2. Intervention and Neonatal Death contingency table and results of logistic regression 

 No-Intervention Intervention 
Neonatal death Yes 15 1 

No 97 787 
 
Ordinary Logistic Regression Approach 

 Beta SE OR=exp (Beta) 95% Confidence Interval (P-value) 
4.82 .032206 125 15.8 to1000 (P=0.000) 

 
MCMC Approach 
Prior Posterior Mean of Beta €MCSE OR=exp (Beta) 95% Credible Interval (P-value) 
Normal (0, 0.5) 2.5 .011877 12.2 5.7 to 27.1 
Normal (0, 1) 3.2 .016299 23.8 9.1 to 62.5 
Normal (0, 1.38) 3.4 .018704 29.9 9.8 to 85.4 
Normal (0, 2) 3.6 .016885 36.5 11.1 to 122.6 
Normal (0, 10) 4.7 .031016 112.4 22.2 to 909 
 
DAP Approach 
Prior Penalized Beta SE OR=exp (Beta) 95% Credible Interval (P-value) 
Normal (0, 0.5) 2.5 .4226359 12.5 5.5 to 28.8 
Normal (0, 1) 3.1 .5032273 22.7 8.3 to 62.5 
Normal (0, 1.38) 3.4 .5473388 28.9 9.8 to 84.4 
Normal (0, 2) 3.6 .602612 37.5 11.5 to 121.6 
Normal (0, 10) 4.8 .8479396 118.8 20.1 to 909 
 
Bayes Factor Approach 
Prior odds 
for null hypothesis 

*Bayes factor Posterior odds 
for null hypothesis 

Evidence 

1 0.0000031 0.0000031 Evidence not worth more than a bare mention in favor of 
H0 

€ Monte Carlo estimation of standard error for Beta regression coefficient  
* The ratio of likelihood of data in model with intercept effect versus model with intercept and vitamin D-intervention effects 
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Appendix 
MCMC history and algorithm: MCMC consists of 2 parts: The Monte Carlo method and the Markov chain stochastic process (3, 34, 43). Historically, 
the Monte Carlo method is the first approach to simulate measures such as mean or variance. It uniformly generates samples from a probability function 
and numerically calculates the measures. This sampling approach was improved by some methods such as importance sampling (44, 45) and rejection 
sampling (46). As a special case of importance sampling, weighted-prior, instead of uniformly generating samples from the prior, assigns a weight ob-
tained from the likelihood of data to each sample. Therefore, the posterior is obtained through weighted-prior samples. MCMC, as a dynamic and ad-
vanced approach, is more practical (36). There are 2 popular algorithms for MCMC method: Metropolis-Hastings first introduced by Metropolis in 1953, 
and its special case Gibbs sampler introduced in 1984 (47). Recent developments have provided an extensive literature. Armitage has provided a neat 
catalogue of the references and summaries (7, 15, 48). To present its algorithm, imagine a researcher is interested in estimating the mean of birth weight 
in infants with GDM mothers to test whether they are subjected to fetal macrosomia. The researcher knows that the weight is normally distributed with a 
standard deviation of 100. She has only observed a weight of an infant equal to 3500 grams and wants to apply MCMC approach to draw samples from 
the “target” distribution, Bayesian talking “posterior”, which represents the probability of each possible value of the population mean given this single 
observation, normal (μ = 3500, σ = 100). To draw samples from the distribution of weight, MCMC firstly starts with an educated guess. Suppose this 
initial guess is 3600; then, a chain of new samples is created by this initial sample. Two steps are considered in the process of generating a new sample: 
first, adding a small random noise to the initial and generating a “proposal” for the new sample; second, deciding whether it is an appropriate sample or 
not through an acceptance rule. Moreover, there are various ways of creating proposals and rules for accepting or rejecting this candidate. Metropolis-
Hastings is one of the famous methods. The following illustration is the Metropolis-Hasting algorithm to generate a chain of samples: 

1. Generate an initial sample for weight, eg, 3600. 
2. Generate a proposal sample by adding a random noise to the initial sample from normal (μ = 0, σ = 50) proposal distribution, eg, 3650. 
3. It is time to decide whether to accept the proposal as the next sample or not. Compare the height of the posterior at the value of the new proposal 

against the height of the posterior at the initial sample. If this proportion is greater than one, one is considered as the value.  
4. Generate a pseudo-random number from a uniform (0, 1) distribution called u. 
5.  If this proportion is greater than u, accept the new proposal; otherwise, reject it with a probability equal to the value of the proportion of the 

heights. In the case of rejecting the proposal, the initial is selected as the new sample again and the process of sampling is iterated until 
enough samples are generated. 

In Bayesian jargon, considering the proposal as prior distribution and target as prior multiplied by likelihood which is posterior distribution.  
After generating samples from the posterior distribution, computational methods can be applied to estimate the mean, median, and mode of infants’ 
weight. The credible interval is also estimable for the mean of posterior which, unlike 95% CI, showed the range of the estimated parameter. 
 
Stata codes for Bayesian and DAP methods of analysis for estimating the effect of history of GDM on fetal macrosomia 
 
Bayesian: 
bayesmh neonatalDeath interv, likelihood(logit) prior({interv}, normal(0,1)) prior({_cons}, flat) 
bayesmh neonatalDeath interv, likelihood(logit) prior({interv}, normal(0,10)) prior({_cons}, flat) 
 
DAP: 
#penlogit neonatalDeath interv, nprior(interv ln(1) 1) or 
#penlogit neonatalDeath interv, nprior(interv ln(1) 10) or 
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