Association between metabolic syndrome and bone mineral density among menopausal Saudi women: Case-control study

Essra Al-Dawood1, Mubashir Zafar*2

Received: 14 May 2020 Published: 18 Feb 2021

Abstract
Background: Metabolic syndrome (MetS) and osteoporosis are two of the world's major healthcare issues. There are several studies which explored the association between MetS and bone mineral density (BMD), but all of them are cross-sectional. These studies cover all populations, including expatriated, which did not determine the actual problem among Saudi women. This is the first case-control study that determines the causal relationship between MetS and BMD. The objective of this study is to determine the relationship between metabolic syndrome and bone mass density among Saudi menopausal women in Eastern Province - Saudi Arabia.

Methods: It’s a case-control study and 380 menopausal Saudi women were selected through simple random sampling. They were divided into 190 cases with osteoporosis and 190 without osteoporosis. Bone Mineral Density (BMD) at the total hip was determined using dual-energy X-ray absorptiometry (DEXA). T score was calculated. The association between the risk factors of MetS and bone mineral density was determined by binary logistic regression analysis using SPSS (statistical package of social science) software.

Results: Among women, the prevalence of MetS was substantially higher in those with osteoporosis. The Mets is positively correlated with bone mineral density. (r=0.08, p=0.051). The occurrence of MetS was associated with increased osteoporosis among Saudi women (B=0.004; p=0.005) after adjustment of confounders. The existence of obesity was significantly associated with increased odds of Bone marrow density among women (OR 2.56; 95 % CI, 2.22-3.44; p=0.030) after adjustment of confounders.

Conclusion: The incidence of MetS was associated with osteoporosis in Saudi women.

Keywords: Bone mineral density, Menopausal women, Metabolic syndrome, Osteoporosis

Introduction
The occurrence of metabolic syndrome (MetS) is expanding at a very high rate in developed and developing nations throughout the world (1). MetS is a cluster of risk factors of heart disease such as high blood pressure, high blood cholesterol level, high waist circumference, raised fasting plasma glucose and abdominal obesity (2). Epidemiologic researches indicate that metabolic syndrome is the most important risk factor for various numbers of chronic diseases mainly heart-related diseases and type II diabetes (3). It is estimated that the prevalence of MetS ranges from 20% to 25% of the population in the world. (3) A study found that people with MetS likely to die...
more than twice compared to individuals with no syndrome. (3) A survey published in 2018 shows that in Saudi Arabia, the prevalence of MetS is approximately 39.8%. (4) It is estimated that 8.9 million fractures yearly are reported among 200 million people; it means every 3 seconds, one fracture is reported. (5) A study conducted previously and the findings showed that waist circumference is significantly related to body surface area (BSA) \(r=0.186, p<0.01 \). This result was similar to a cross-sectional study (6) that included 2007 participants (1045 males and 962 females) over 50 years of age to examine the link between MetS and osteoporosis. Another study was conducted in China showed similar results and a positive association of MetS with osteoporosis among elderly populations. (7).

Although MetS and osteoporosis were earlier thought to be two unrelated diseases, studies have shown that both conditions share several genetic, nutritional, and hormonal factors (8). There are different studies that determine the association of MetS with osteoporosis, but the specific association between MetS risk factors never determined. (9-15).

The prevalence of metabolic syndrome has increased in Saudi Arabia, forcing such a need to determine the causal factors leading to MetS among the aged population. Life expectancy also rises, which raises Saudi women's risk of osteoporosis. Only limited studies have focused on explaining the relationship between MetS and BMD in Saudi Arabia. These studies cover all populations including expatriates which did not determine the actual problem among Saudi women. These studies are cross-sectional and did not determine the temporality (causal association). This research will also be the first case-control study undertaken in Saudi Arabia in order to determine a possible causal relationship between the two conditions. Furthermore, only Saudi females will be included as survey respondents estimating the real issue among Saudi women.

The objective of this study is to determine the association between MetS and BMD among Saudi menopausal women in Eastern Province - Saudi Arabia.

Methods

Study setting

This case-control study was performed at Safwa General Hospital, one of the Eastern Province's main government facilities consisting of nearly 30 beds and serving approximately 150-200 patients daily in the outpatient departments (OPD). And also, patients will be included from one of the biggest primary healthcare centers in Qatif that serve about 80-100 patients daily.

Study participants

All menopausal women (age 45-75 years old) who had a BMD scan of Dual-Energy X-ray Absorptiometry (DEXA) (Lunar Prodigy Advance; GE Healthcare, Madison, WI, USA) and were diagnosed as osteoporotic were included as cases and women without osteoporosis were included as controls. The patients were referred by their physicians after visiting the hospital for regular checkups.

Menopausal status was determined based on the history of lack of menstruation for the last one year.

Inclusion criteria for cases: All menopausal women between the age of 45-75 years and clinically confirmed by their physician using a BMD scan were included. All were diagnosed with MetS.

Exclusion criteria: Peri-menopausal women, participants with other co-morbidity and women under hormonal treatment were excluded.

Inclusion criteria for controls: All menopausal women aged 45 and 75 years old who were free of osteoporosis with MetS were included.

Exclusion criteria: Perimenopausal women, age above 75 years or patients receiving estrogen replacement therapy were excluded. Hormonal replacement therapy was defined as the therapeutic use of hormones typically to increase diminished levels in the body.

Sample size

Sample size was calculated by WHO sample size calculator for health studies. Based on 95% confidence level, a relative precision of 0.25, the probability of the exposure to disease of 0.6, the probability of the exposure to no disease of 0.4, and anticipated odds ratio of 1.5, the sample size of this study was 380. The sample size was equally divided into 190 participants for the cases and 190 for the controls. The participants were selected through simple random sampling.

Data collection tool and technique

Structured questionnaire was used. The questionnaire was divided into four sections, including sociodemographic characteristics, anthropometric measurement, biochemical measurements including FBG, RBG, lipid profile, and DEXA measurement.

Anthropometry, blood sample and analysis

Anthropometric measures were determined through an automatic Anthrop Meter. Body mass index (BMI) was calculated through the formula, weight (Kg) divided by height (m²); and then classified according to the WHO classes: Normal weight (18.5-24.99 Kg/m²), Overweight (25-29.99 Kg/m²), Obese (≥30 Kg/m²), the waist circumference (WC) was calculated using a tape.

Blood pressure was calculated using a blood pressure apparatus. Blood samples were collected after 8 to 12 hours of fasting to measure Fasting Blood Sugar (FBS), High Density Lipoprotein (HDL), and Triglyceride (TG).

Criteria for the diagnosis of metabolic syndrome

Participants were diagnosed with MetS using the criteria (at least three components):

1. Waist circumference: (WC) ≥ 102 cm (males), ≥ 88 cm (females),
2. Hyperglycemia: fasting blood sugar (FBS) ≥ 100 mg/dl,
3. Hypertriglyceridemia: serum triglycerides (TG) ≥ 150 mg/dl,
4. Serum HDL-cholesterol (HDL-C) <50 mg/dl,
5. Systolic blood pressure (SBP) ≥ 130 mmHg, and/or diastolic blood pressure (DBP) ≥ 85 mmHg.

http://mjiri.iums.ac.ir
Criteria for diagnosis of osteoporosis

The bone mineral density of the total hip was measured using dual-energy X-ray absorptiometry (DEXA). The T-scores were calculated, and the diagnosis of osteoporosis was made according to the World Health Organization criteria: Osteopenia (T score between from -1 to -2.5), Osteoporosis (T score < -2.5) and Normal (T score > -1).

T-Score Tertiles: T score was divided into tertiles (tertile 1: low score, tertile 3: high score).

Ethical consideration

Ethical approval was received from Imam Abdulrahman Bin Faisal University research ethical review board. Permission was taken from the hospital. Informed consent was obtained from all subjects who agreed to participate in the study before the interview. Participation was voluntary, and participants were free to withdraw at any time without any explanation. The confidentiality and privacy of the subjects were maintained and there was no financial benefit to either the subjects or the researcher.

Statistical analysis

All Statistical analysis was performed with SPSS windows version 23. Continuous data were presented as mean ± standard deviation (SD). Statistical significance between the groups was evaluated using Chi-square test. Correlation between MetS and BMD was determined using Pearson’s correlation test. A Confident Interval (CI) of 95% and a P-value of less than 0.05 (two-sided) was considered as statistically significant. Binary logistic regression was used to determine the association between MetS and BMD. T-score tertile was used as a dependent variable (with the lowest tertile as a reference) and full MetS or its individual components (present vs. absent) as independent variables.

Results

The mean age of the participants were 63.8±7.1 years. The data showed a statistically significant difference in age categories between women with MetS and osteoporosis compared to their counterparts, i.e. those with osteoporosis who were older (p=0.000) (Table 1).

Prevalence of osteoporosis was higher among those women who were physically inactive (57.9% vs. 42.1%; p=0.016 compared to those without osteoporosis (58.3% vs. 41.7%); p=0.016).

Table 1. Socio-Demographic characteristics of Study Participants (n=380)

<table>
<thead>
<tr>
<th>Sr No</th>
<th>Characteristics</th>
<th>Cases =190</th>
<th>Control=190</th>
<th>p*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Age (years) (Mean ±SD)</td>
<td>65.45±7.24</td>
<td>62.15±7.12</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Age Categories</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45-60 years</td>
<td>59 (36.1)</td>
<td>59 (63.9)</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td>61-75 years</td>
<td>131 (56.3)</td>
<td>131 (43.7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Age at Menopause (years) (Mean ±SD)</td>
<td>51.70±4.97</td>
<td>51.35±3.94</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Marital status</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single</td>
<td>8 (46.7)</td>
<td>8 (53.3)</td>
<td>0.530</td>
<td></td>
</tr>
<tr>
<td>Married</td>
<td>141 (48.6)</td>
<td>141 (51.4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Widowed& Divorced</td>
<td>41 (55.4)</td>
<td>41 (44.6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Education level</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Illiterate</td>
<td>76 (53.3)</td>
<td>76 (46.7)</td>
<td>0.423</td>
<td></td>
</tr>
<tr>
<td>Intermediate</td>
<td>67 (50)</td>
<td>67 (50)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High School& University</td>
<td>47 (44.7)</td>
<td>47 (55.3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Occupation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Housewife</td>
<td>173 (51)</td>
<td>173 (49)</td>
<td>0.214</td>
<td></td>
</tr>
<tr>
<td>Employed</td>
<td>17 (40)</td>
<td>17 (60)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Exposure to Sunlight per day</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>110 (51.6)</td>
<td>110 (49.4)</td>
<td>0.467</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>80 (47.8)</td>
<td>80 (52.2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Veil Type</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Covering hair only</td>
<td>20 (53.8)</td>
<td>20 (46.2)</td>
<td>0.873</td>
<td></td>
</tr>
<tr>
<td>Eyes shown only</td>
<td>108 (49.3)</td>
<td>108 (50.7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Full cover</td>
<td>62 (50)</td>
<td>62 (50)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Physical Activity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>85 (57.9)</td>
<td>85 (42.1)</td>
<td>0.016</td>
<td></td>
</tr>
<tr>
<td>Yes , 1-2 times/day</td>
<td>66 (41.7)</td>
<td>66 (58.3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>>3 times/ day</td>
<td>39 (46.8)</td>
<td>39 (53.2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Smoking</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Never smoke</td>
<td>103 (49.5)</td>
<td>103 (50.5%)</td>
<td>0.837</td>
<td></td>
</tr>
<tr>
<td>Ever smoke</td>
<td>87 (50.6)</td>
<td>87 (49.4%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Family History of Met</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>145 (51.4)</td>
<td>145 (48.6)</td>
<td>0.334</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>45 (45.6)</td>
<td>45 (54.4)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data are given as the mean ± SD or as the number of subjects with percentages given in parentheses, as appropriate. Categorical data are compared by χ2 test, BMD: bone mineral density. P-value <0.05 significant.
Table 2 shows the difference in anthropometric and biochemical parameters of all participants. Osteoporosis was significantly less common among women with higher BMI compared to their counterparts (58% vs. 42%, p=0.001). In addition, participants with higher Serum TG level had significantly higher number of osteoporosis compared with their counterparts (p=0.000). Moreover, women with lower mean levels of HDL-C had significantly less cases of osteoporosis compared to their counterparts (p<0.001).

A low BMD represented a T1-score and a high BMD represented T3-score. Different components of MetS showed no difference among various tertiles in both groups. The data does not show any significant statistical difference in either group (Table 3).

A very weak negative correlation was observed between BMD and SBP (r=-0.072, p=0.320), TG (r=-0.069, p=0.342) and HDL (r=-0.065, p=0.375) in women with osteoporosis, and between BMD and WC (r=-0.091, p=0.213), TG (r=-0.025, p=0.729) and HDL (r=-0.061, p=0.406) in their control counterparts. No statistical significance was found in either group (p>0.05) (Table 4).

According to Table 5, all the socio-demographic characteristics were associated with osteoporosis but none of them were statistically significant. As Table 6 depicts, triglyceride is the only component of metabolic syndrome...
that was significantly associated with osteoporosis. Every unit change in the level of triglycerides was related to a 0.004 unit decreased in osteoporosis.

Table 4. Correlation between Bone Mineral Density and features of the metabolic syndrome in 380 postmenopausal women

<table>
<thead>
<tr>
<th>S.no</th>
<th>Variables</th>
<th>BMD cases T score</th>
<th>r</th>
<th>(p)</th>
<th>BMD cases T score</th>
<th>r</th>
<th>(p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>WC (cm)</td>
<td>.082</td>
<td>(.050)</td>
<td>.091</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>SBP (mmHg)</td>
<td>-.072</td>
<td>(.320)</td>
<td>.141</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>DBP (mmHg)</td>
<td>.084</td>
<td>(.247)</td>
<td>.024</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>FBS (mmol/L)</td>
<td>.030</td>
<td>(.677)</td>
<td>.067</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>TG (mmol/L)</td>
<td>-.069</td>
<td>(.342)</td>
<td>.025</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>HDL (mmol/L)</td>
<td>-.065</td>
<td>(.375)</td>
<td>.061</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

r: Pearson correlations. WC: waist circumference, SBP: systolic blood pressure, DBP: diastolic blood pressure, FBG: fasting blood glucose, TG: triglycerides HDL-C: High-density lipoprotein cholesterol. P-value <0.05 significant

Table 5. Associations of Osteoporosis with Metabolic syndrome other risk factors among women in Dammam, KSA

<table>
<thead>
<tr>
<th>Risk Factors</th>
<th>Cases (n=190)</th>
<th>Control (n=190)</th>
<th>Unadjusted risk Estimate OR (95% CI) P-value</th>
<th>Adjusted Risk Estimate OR (95% CI) p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45-60 years</td>
<td>59.5 (36.1%)</td>
<td>76 (40%)</td>
<td>0.439 (0.281-0.686) 0.000 0.128 (0.050-0.327) 0.000</td>
<td></td>
</tr>
<tr>
<td>61-75 years</td>
<td>130.5 (56.3%)</td>
<td>114 (60%)</td>
<td>0b 0b 0b 0b</td>
<td></td>
</tr>
<tr>
<td>BMI</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>44 (23.2%)</td>
<td>20 (10.5%)</td>
<td>0b 0b 0b 0b</td>
<td></td>
</tr>
<tr>
<td>Overweight</td>
<td>65 (34.2%)</td>
<td>58 (30.5%)</td>
<td>0.509 (0.270-0.962) 0.038 1.087 (0.398-2.964) 0.871</td>
<td></td>
</tr>
<tr>
<td>Obese</td>
<td>81 (42.6%)</td>
<td>112 (58.9%)</td>
<td>1.329 (1.180-1.600) 0.000 2.569 (2.224-3.445) 0.030</td>
<td></td>
</tr>
<tr>
<td>Marital Status</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single</td>
<td>7 (3.7%)</td>
<td>8 (4.2%)</td>
<td>0.704 (0.234-2.120) 0.532 0.400 (0.059-2.716) 0.348</td>
<td></td>
</tr>
<tr>
<td>Married</td>
<td>137(72.1%)</td>
<td>145 (76.3%)</td>
<td>0.760 (.465-1.243) 0.274 0.797 (0.355-1.789) 0.582</td>
<td></td>
</tr>
<tr>
<td>Widowed</td>
<td>46 (24.2%)</td>
<td>37 (19.5%)</td>
<td>0b 0b 0b 0b</td>
<td></td>
</tr>
<tr>
<td>Education</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Illiterate</td>
<td>81 (42.6%)</td>
<td>71 (37.4%)</td>
<td>1.412 (0.843-2.368) 0.190 0.702 (0.222-2.227) 0.548</td>
<td></td>
</tr>
<tr>
<td>Intermediate</td>
<td>67 (35.3%)</td>
<td>67 (35.3%)</td>
<td>1.238 (0.729-2.102) 0.429 0.865 (0.306-2.447) 0.785</td>
<td></td>
</tr>
<tr>
<td>University</td>
<td>42 (22.1%)</td>
<td>52 (27.4%)</td>
<td>0b 0b 0b 0b</td>
<td></td>
</tr>
<tr>
<td>Occupied</td>
<td>176 (92.6%)</td>
<td>169 (88.9%)</td>
<td>1.562 (0.769-3.172) 0.217 1.686 (0.345-8.228) 0.519</td>
<td></td>
</tr>
<tr>
<td>Veil Type</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hair only</td>
<td>21 (11.1%)</td>
<td>18 (9.5%)</td>
<td>0b 0b 0b 0b</td>
<td></td>
</tr>
<tr>
<td>Eyes shown</td>
<td>107 (56.3%)</td>
<td>110 (57.9%)</td>
<td>0.834 (0.421-1.652) 0.602 0.713 (0.214-2.372) 0.581</td>
<td></td>
</tr>
<tr>
<td>Full cover</td>
<td>62 (32.6%)</td>
<td>62 (32.6%)</td>
<td>0.857 (0.417-1.763) 0.675 0.348 (0.097-1.248) 0.105</td>
<td></td>
</tr>
<tr>
<td>Physical Activity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 1 time</td>
<td>99 (52.1%)</td>
<td>72 (37.9%)</td>
<td>1.566 (0.912-2.690) 0.104 1.041 (0.358-3.027) 0.941</td>
<td></td>
</tr>
<tr>
<td>1-2 times</td>
<td>55 (28.9%)</td>
<td>77 (40.5%)</td>
<td>1.813 (.462-1.432) 0.475 .685 (0.236-1.988) 0.487</td>
<td></td>
</tr>
<tr>
<td>>3 times Smoking</td>
<td>36 (18.9%)</td>
<td>41 (21.6%)</td>
<td>0b 0b 0b 0b</td>
<td></td>
</tr>
<tr>
<td>Ever</td>
<td>88 (46.3%)</td>
<td>86 (45.3%)</td>
<td>1.043 (0.697-1.562) 0.837 0.541 (0.265-1.108) 0.093</td>
<td></td>
</tr>
<tr>
<td>Never</td>
<td>102 (53.7%)</td>
<td>104 (54.7%)</td>
<td>0b 0b 0b 0b</td>
<td></td>
</tr>
</tbody>
</table>

Odds ratio with 95% confidence interval, BMI = body mass index; The reference category is: T1. b: This parameter is reference category. P-value <0.05 significant
Relationship between metabolic syndrome and bone mineral density

<table>
<thead>
<tr>
<th>Risk Factors</th>
<th>B</th>
<th>SE</th>
<th>β</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>WC</td>
<td>0.000</td>
<td>0.002</td>
<td>0.014</td>
<td>0.781</td>
</tr>
<tr>
<td>SBP</td>
<td>0.001</td>
<td>0.005</td>
<td>-0.14</td>
<td>0.056</td>
</tr>
<tr>
<td>DBP</td>
<td>0.006</td>
<td>0.008</td>
<td>0.043</td>
<td>0.443</td>
</tr>
<tr>
<td>TG</td>
<td>0.004</td>
<td>0.001</td>
<td>-0.194</td>
<td>0.001</td>
</tr>
<tr>
<td>HDL</td>
<td>0.002</td>
<td>0.005</td>
<td>0.019</td>
<td>0.729</td>
</tr>
<tr>
<td>FBS</td>
<td>0.001</td>
<td>0.002</td>
<td>0.023</td>
<td>0.664</td>
</tr>
</tbody>
</table>

B: unstandardized beta, SE: standard error, β: standardized beta, WC: waist circumference, SBP: systolic blood pressure, DBP: diastolic blood pressure, TG: triglyceride, HDL-C: high density lipoprotein cholesterol, FBS: fasting blood sugar. P-value <0.05 significant.

Discussion
The study revealed that osteoporosis was significantly associated with metabolic syndrome in Saudi women. This association was unbiased of other covariates. This result is consistent with other studies (16–18). It is suggested that low levels of HDL are risk factors for osteoporosis (19–22).

This study found that metabolic syndrome components were more common in osteoporotic patients compared to non-osteoporotic patients. These results were similar to other studies which found that higher blood pressure in osteoporotic patients is associated with an increased chance of bone loss (23). Furthermore, low HDL levels were observed among those who had osteoporosis (24). A previous case-control study found that high blood pressure was a major contributor to bone loss. (25) Another component of MetS is the TG level. Our study found high levels of TG in osteoporotic patients and TG levels increased with age.

Results found that MetS is statistically related to WC and obesity. This result was consistent with other studies. Pathophysiological systems connecting fracture to obesity is not still determined. Growth of fat around the hip joint may lead to an elevated level of emission of pro-inflammatory cytokines that are harmful to bone. (26–28)

Physical activity was also associated with osteoporosis in this study. This result is in contrast with some other studies. A previous study found that those who were more physically active had a less chance of osteoporosis fracture (29).

The study also found that those women who covered their bodies had more osteoporosis. The reason for this association is that sunlight is an important factor for bone mineralization. This result is consistent with other studies (30-31).

The study had several limitations. This was a case-control study and information bias might be present in the result. Second, the subjects were selected from two centers only.

Conclusion
Our findings suggested a strong association between Mets and BMD. Early diagnosis of osteoporosis in those with MetS is important.

Acknowledgment
We should extend our sincere appreciation to the Department of Public Health, Imam Abdulrahman Bin Faisal University, for the provision of the necessary support that enabled us to fulfill this study.

Research involving human participants
All procedures performed in this study involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. This research was approved by the ethical review committee of the hospital. Confidentiality of data has maintained.

Conflict of Interests
The authors declare that they have no competing interests.

References
2. The IDF consensus worldwide definition of the METABOLIC SYNDROME.2016 {internet} Available from: https://www.idf.org/component/attachments/attachments.html?id=705 &task=download

