DIFFERENTIATION BETWEEN PROSTATIC CARCINOMA AND BENIGN PROSTATIC HYPERPLASIA BY AgNOR STAINING

SIMIN TORABI-NEZHAD, M.D., AND PARVIN KHERADMAND, M.D.

From the Department of Pathology, Shiraz Medical School, Shiraz University of Medical Sciences, Shiraz, I.R. Iran.

ABSTRACT

Thirty cases of benign prostatic hyperplasia and 30 cases of prostatic adenocarcinoma were selected and stained by AgNOR (argyrophilic staining of the nucleolar organizer region) method. Specimens were obtained by either prostatectomy (open/TUR) or needle biopsy of the prostate. In this study, the sections of prostatic adenocarcinoma were reviewed. 6 cases were diagnosed as well-differentiated, 12 cases as moderately-differentiated and 12 cases as poorly differentiated adenocarcinoma. The method of AgNOR staining was applied to see if it would be useful in the distinction between benign and malignant lesions. In benign lesions, the mean number of AgNOR count was 2.5 and in malignant specimens was 7.4. Prostatic hyperplasia (benign) specimens showed two or three well-defined NORs, but in malignant tumors, there were many irregular small NORs. AgNOR stain can be used for differentiation between benign and malignant lesions of the prostate, but this stain should not be used as a reliable index for grading prostatic adenocarcinoma, because overlapping was seen in some cases.

MJIRI, Vol. 12, No.4, 333-338, 1999

Keywords: AgNOR staining, Prostatic carcinoma, Benign prostatic hyperplasia.

INTRODUCTION

Nucleolar organizer regions (NORs) are loops of DNA that are responsible for ribosomal RNA (rRNA) transcription. They are located in the nucleoli of cells and on the short arms of chromosomes 13, 14, 15, 21 and 22 in association with proteins. As rRNA molecules are the main sites of protein synthesis, it has been suggested that the numbers of NORs may reflect nuclear and cellular activity. NORs are argyrophilic because their associated acidic proteins (i.e., C23, B23 and possibly RNA polymerase 1) contain abundant sulfhydryl and carboxy groups which precipitate silver ions. So NORs can be visualized as intranuclear black dots by histochemical staining with colloid silver solution. For the first time, Ploton et al. modified the AgNOR technique for paraffin-embedded formalin-fixed tissues. Then Crocher and his colleagues reported application of the AgNOR technique for diagnostic
Table I. Mean and range of AgNOR count in benign and malignant lesions of the prostate.

<table>
<thead>
<tr>
<th>Number of Specimens</th>
<th>Diagnosis</th>
<th>Mean AgNOR Count</th>
<th>Range of AgNOR Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>BPH</td>
<td>2.5</td>
<td>2-3</td>
</tr>
<tr>
<td>6</td>
<td>Well-differentiated adenocarcinoma</td>
<td>6.5</td>
<td>5.2-7.3</td>
</tr>
<tr>
<td>12</td>
<td>Moderately-differentiated adenocarcinoma</td>
<td>7.6</td>
<td>6.4-9.7</td>
</tr>
<tr>
<td>12</td>
<td>Poorly-differentiated adenocarcinoma</td>
<td>9.1</td>
<td>7.4-10.9</td>
</tr>
</tbody>
</table>

In some studies, NOR was found to be diagnostically useful, but the role of NOR in estimating prognosis is controversial.1,4,8,10

**MATERIALS AND METHODS**

Sixty prostatectomy (open/TUR) and needle biopsy specimens, including 30 benign prostatic hyperplasia and 30 prostatic adenocarcinomas specimens from the Pathology Department of Faghihi Hospital, affiliated to Shiraz University of Medical Sciences were recovered. The slides were reviewed, and 6 cases of well-differentiated, 12 cases of moderately-differentiated and 12 cases of poorly-differentiated adenocarcinoma were identified.

Routine sections were taken, stained by AgNOR method, and the mean number of AgNOR dots was calculated. Materials required for AgNOR staining include silver nitrate, gelatin, formic acid, and distilled water.

The method of AgNOR staining is as follows.

1) 3-4 micron thick sections of paraffin-embedded tissue are taken.
2) Sections are dewaxed in xylene and hydrated through ethanol to water solutions.
3) Then they are incubated in freshly prepared solution for 45 minutes at room temperature, washed in distilled water for 1 minute, and dehydrated and mounted.

After this treatment, NORs are visualized as distinct black intranuclear dots that stain orange to brown.

In each specimen, 50 nuclei were examined using a 100x oil immersion lens and the mean number of AgNOR dots per cell was calculated. Only the nuclei of prostatic glands were examined and cells were selected randomly.

![Mean AgNOR counts in benign and malignant prostatic lesions.](image)

A) Benign prostatic hyperplasia
B) Prostatic adenocarcinoma (regardless of differentiation).
S. Torabi-Nezhad and P. Kheradmand 

RESULTS

The mean AgNOR counts per nucleus in different lesions was as follows (Table I):
- BPH: 2.5/nucleus (range: 2-3) (Fig. 4).
- Well-differentiated adenocarcinoma: 6.5/nucleus
- Moderately-differentiated adenocarcinoma: 7.6/nucleus (range: 6.4-9.7) (Fig. 6).
- Poorly-differentiated adenocarcinoma: 9.1/nucleus (range: 7.4-10.9) (Fig. 7).
- Adenocarcinoma of the prostate regardless of differentiation: 7.4/nucleus.

There was no overlap of mean AgNOR counts per lesion between carcinoma and prostatic hyperplasia (Figs. 1, 2) but the range of AgNOR counts in the three groups of carcinoma showed overlapping (Fig. 3).

DISCUSSION

Prostatic cancer is one of the most common malignancies in males. As the population grows older, the rate of cancer of the prostate and prostatic hyperplasia increases. In prostatectomy specimens submitted as prostatic...
Prostate Cancer and BPH Differentiation by AgNOR

Fig. 4. BPH, AgNOR stain (x900). The AgNORs are single, well defined, black intranucleolar dots (arrow).

Fig. 5. Well-differentiated adenocarcinoma. AgNOR stain (x900). The AgNOR dots are few, well defined and small (arrow).

Fig. 6. Moderately-differentiated adenocarcinoma. AgNOR stain (x900). The AgNOR dots are multiple, small and irregular (arrows).

Fig. 7. Poorly differentiated adenocarcinoma. AgNOR stain (x900). The AgNOR dots are multiple, small and irregular (arrows).

hyperplasia, microscopic foci of prostatic cancer are sometimes incidentally discovered. Sometimes it becomes difficult to distinguish prostatic hyperplasia from prostatic adenocarcinoma, especially well-differentiated forms. Therefore, diagnostic tools are necessary for early detection of prostatic carcinoma and differentiation between malignant and benign prostate lesions.

Silver staining of nucleolar organizer regions (AgNOR) is one of these techniques that can help to diagnose prostatic cancer and be useful to distinguish between benign and malignant prostatic lesions.6,8,10 NORs are DNA loops encoding ribosomal RNA production. AgNOR numbers correlate with growth fraction and may have diagnostic utility in human tumors.8 AgNOR will be visualized as black satellites within the cell nucleus.

The number of detectable AgNOR within a nucleus depends upon:

1) the level of transcriptional activity,

2) the number of AgNOR bearing chromosomes, and

3) the stage of cell cycle (the nucleolus disperses before mitotic division and is reorganized afterwards).8

However, AgNOR in normal cells are usually tightly aggregated within one or two nucleoli, making individual AgNOR indiscernable. An increase in the mean AgNOR count of a cell population could take place if:

1) cell proliferation is so active that nucleolar disaggregation is present in many cells, increasing individual AgNOR detection;

2) there is a defect of nucleolar association resulting in AgNOR dispersion;

3) cell ploidy increases, resulting in a real increase of AgNOR bearing chromosomes; or

4) transcriptional activity increases, resulting in prominence of otherwise inconspicuous AgNOR.8

Theoretically, neoplastic cell populations could show any or all of the above defects and therefore demonstrate...
increased AgNOR counts. The studies on many types of malignancies confirmed this theory. For example, studies on breast cancer suggest that AgNOR not only helps diagnose breast cancer, but also can be a useful tool for predicting the prognosis; the higher the numbers and the more bizarre the morphology of AgNOR in the primary tumor, the more extensive the nodal disease and the worse the prognosis. This method has also been used for differentiating benign from malignant lesions, for example malignant melanoma from melanocytic nevi, hyperplastic endometrium from neoplastic endometrium, and benign lesions from malignant tumors of the colon. All of these studies showed that AgNOR numbers were much greater in malignant lesions than benign lesions.

Studies on prostatic lesions showed a significant difference in AgNOR numbers between prostatic hyperplasia and prostatic cancer and confirmed the role of this method in diagnosis of these two groups. One study on prostate cytology suggested that AgNOR analysis improves the differentiation between malignant and benign prostatic cells, but a few papers have shown that there is considerable overlap in AgNOR counting and therefore AgNOR counts are not useful for diagnosis of hyperplastic and neoplastic prostatic lesions.

AgNOR stain is also used for distinction between highly malignant and less malignant forms of prostatic carcinoma. Some researchers have found that AgNOR counts correlate significantly with the tumor’s Gleason score, and have concluded that the AgNOR count may be used as a marker of tumor differentiation.

The role of AgNOR in prognosis of prostatic carcinoma is controversial. Some studies showed that AgNOR may be useful for determining the prognosis of prostatic carcinoma, while others report no prognostic value. AgNOR stain is also used for distinguishing benign from malignant lesions of the prostate and for determining the grade of differentiation of prostatic adenocarcinoma.

REFERENCES


