Doppler-Derived Right Ventricular Myocardial Performance Index in Neonates: Normal Values

E. Malakan Rad,* M.D., and N. Momtazmanesh,** M.D.

From the Department of Pediatric Cardiology, Kashan University of Medical Sciences, Kashan, I.R. Iran.

ABSTRACT

Doppler-derived myocardial performance index (MPI), defined as the sum of isovolumetric contraction and relaxation durations divided by ejection time, is an easily measured and reproducible index that shows both systolic and diastolic myocardial function. The goal of this study was to define normal values of right ventricular MPI in neonates in the first 48 to 72 hours of life.

Fifty-one quiet or sleeping healthy and term neonates underwent complete M-mode, two-dimensional color-Doppler echocardiographic examination and RV MPI was calculated in them. Statistical analysis was performed using SPSS software. A P value less than 0.05 was considered as significant.

RV MPI was shown to be 0.23±0.14 in healthy neonates. There was no correlation between RV MPI and either age or weight of the newborn infants. While this value closely resembles the results of some researchers, it is lower than that previously reported by other investigators in healthy children. The lower value of RV MPI in neonates may be possibly related to the higher pulmonary arterial pressure or right ventricular mass in the first few days of life in neonates. Further study to evaluate the effect of pulmonary arterial pressure and right ventricular mass on RV MPI is recommended.

INTRODUCTION

Traditionally assessment of ventricular systolic function by two-dimensional echocardiography has been based on geometric models of ventricular shape. However this kind of assessment of ventricular ejection fraction and volume may be difficult to obtain because of poorly defined ventricular endocardial borders and complex ventricular geometry in congenital heart diseases.1-2 On the other hand, Doppler analysis of the tricuspid and mitral inflow pattern may be limited because of fusion of the early and late inflow waves during tachycardia, and a normal inflow pattern may be difficult to separate from pseudo-normalization.3,4 Furthermore these traditional parameters of systolic and diastolic myocardial function are influenced by several factors, including preload, afterload and heart rate.5-11

Myocardial performance index (MPI) or Tei index,12 a recently proposed Doppler-derived time interval index, combines both systolic and diastolic time intervals to generate a combined index of global ventricular func-
tion, that is independent of geometric assumptions.

This study was designed to define normal values of RV MPI in healthy neonates.

PATIENTS AND METHODS

Fifty-one neonates including 26 female and 25 male infants were enrolled in the study. In 2001, during a threemonth period, all neonates born at Beheshti’s General Hospital were examined on Saturdays every week. Only those babies with a completely normal physical examination including a thorough cardiovascular evaluation were included. Those with any history of birth asphyxia, meconium aspiration pneumonia or any other problem that predisposed the infant to persistent pulmonary hypertension of the newborn (PPHN) were excluded. Because of ethical issues, no blood sampling was performed but those who were suspicious to have hypoglycemia or other electrolyte imbalances (such as premature or IUGR newborns, infants of diabetic mothers, macrosomic babies, ...) were all excluded.

Data including prenatal history, mode of delivery (normal vaginal vs. cesarean section), gestational age, postnatal age (as hours), sex, weight and the state of infant alertness (asleep or awake but quiet) were recorded. The preterm neonates were excluded. Also, the crying infants were either soothed in some way or otherwise excluded from the study.

Then all the neonates who fulfilled the criteria underwent a complete two-dimensional and color-Doppler echocardiographic study within 48 to 72 hours after birth, using a Hewlett-Packard Sonos 1000 ultrasound system and a 5 MHZ transducer.

After routine echocardiographic examination, the tricuspid inflow waves were recorded from the apical fourchamber view with the pulsed-wave Doppler sample volume positioned at the tips of tricuspid leaflets in diastole; Doppler signals were displayed at a paper speed of 100mm/second. Right ventricular (RV) ejection time was measured from the parasternal short-axis scan plane with a pulse-wave Doppler signal placed at the pulmonary valve annulus in the RV outflow tract. Calculation of isovolumic contraction time (ICT), isovolumic relaxation time (IRT) intervals and RV MPI are demonstrated in Fig. 1. To account for slight variations in R-R cycle length, each time interval was measured on >5 consecutive beats and then averaged.

Statistical analysis

Data are expressed as mean ±SD or percentages where appropriate. A Mann-Whitney rank-sum test was used to compare age, weights and MPI in the two sexes; linear regression analysis was used to assess the relation of MPI to age, sex and weight.

Statistical significance was defined as P value < 0.05.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Female (n=26)</th>
<th>Male (n=25)</th>
<th>Total (n=51)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (hours)</td>
<td>34.2 ±14.5</td>
<td>25.0 ±11.6</td>
<td>29.7 ±13.8</td>
</tr>
<tr>
<td>Weight (Grams)</td>
<td>3028.1 ±527.2</td>
<td>3296.7 ±610.8</td>
<td>3158.7 ±575.9</td>
</tr>
<tr>
<td>MPI</td>
<td>0.23 ±0.118</td>
<td>0.27 ±0.15</td>
<td>0.23 ±0.14</td>
</tr>
</tbody>
</table>
Table II. Correlation coefficient between RV MPI and age and weight.

<table>
<thead>
<tr>
<th></th>
<th>Correlation coefficient</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPI * Age</td>
<td>0.227</td>
<td>0.11</td>
</tr>
<tr>
<td>MPI * weight</td>
<td>0.021</td>
<td>0.45</td>
</tr>
</tbody>
</table>

DISCUSSION

Our study demonstrated that the normal range of RV MPI in neonates is 0.23±0.14. To date, there have been few studies on normal values of RV MPI in neonates. As to our knowledge, on the basis of searching in the PubMed, the first study was by Tsutsumi\(^1\) and his colleagues in Japan and the second one by Eidem and his colleagues.\(^1\) It should be cited that there is slight discrepancy in the reported values of the above researches. Eidem and his colleagues reported a normal value of 0.35±0.05 for RMPI in neonates and concluded that advancing gestational age causes no significant change in the fetal RV MPI. On the other hand Tsutsumi and his coworkers reported that Tei index undergoes gradual decrease with increasing gestational age. RV MPI has also been calculated in healthy children. Again, values of 0.24±0.04 by Ishii\(^1\) and 0.32±0.03 by Eidem,\(^1\) reflect the existing discrepancy in this regard. While our results show a lower RV MPI in neonates in comparison with those reported by Eidem for healthy children and neonates, they closely resemble the values obtained by Ishii in healthy children.

Looking back to the formula of RV MPI, we expect that our lower values be due to either a shorter interval between tricuspid inflow waves, i.e., an overall more rapid heart rate in neonates, or a more prolonged pulmonary ejection time. However, previous studies have shown that the correlation between MPI and heart rate is weak.\(^1\) The higher pulmonary arterial pressure within the initial 48 to 72 hours of life may be partly responsible for our findings. To date, the relationship between pulmonary arterial pressure and RV MPI has not been directly delineated. However, Caso and his colleagues studied the association between myocardial right ventricular relaxation time and pulmonary arterial pressure in chronic obstructive lung disease and concluded that myocardial relaxation time was positively related to pulmonary systolic pressure.\(^1\)

Lack of correlation between RV MPI and age or weight of the neonates in our study is well explained by the homogenous nature of our studied group of neonates.

Overall, RV MPI is an easily measured index of ventricular myocardial performance, applicable in a wide variety of heart diseases either congenital or acquired.\(^9\)\(^-\)\(^24\)

REFERENCES

2. Colan SD: Principles of Echocardiography. In: Chang AC,
RVMI in Neonates

13. Kalhan SC, Parimi PS: Disorders of carbohydrate metabo-