INTRAMURAL TRACHEOBRONCHIAL REMNANTS: A MISDIAGNOSED CAUSE OF CONGENITAL ESOPHAGEAL STENOSIS

R. K. GUPTA, M.D, M. H. DAIE PARIZI, M.D., AND H. TABRIZCHEE, M.D.

From the Department of Pathology and Pediatrics, Kerman University of Medical Sciences, Kerman, Islamic Republic of Iran.

ABSTRACT

In cases of congenital esophageal stenosis due to tracheobronchial remnants, symptoms of partial esophageal obstruction appear at the time of weaning or during early childhood. In the absence of esophagitis, esophagram combined with cinefluoroscopy demonstrates fixed stenosis of distal esophagus and appears to be diagnostic. Dilatation of rigid stenosis is invariably unrewarding and surgical resection is mandatory. Pathologically, the presence of cartilage or respiratory seromucinous glands in the esophageal wall are pathognomonic features. Other congenital anomalies may be encountered in some cases (30%).

INTRODUCTION

Congenital esophageal stenosis is a rare cause of esophageal obstruction, causing regurgitation or dysphagia during infancy, which is in most instances erroneously confused with other common causes of infantile esophageal obstruction. Three types of congenital esophageal stenosis have been described: (1) segmental stenosis, (2) membranous webs, and (3) intramural rests of tracheobronchial remnants. The latter is the least common type and results in rigid stenosis because of encircling cartilaginous rings. We present here the details of such a case and carefully analyze 29 similar cases reviewed from the literature to identify the diagnostic features of this entity.

CASE REPORT

A 17-month-old female was admitted to this hospital on 15th March, 1988 with the chief complaint of regurgitation after meals since the age of six months when semisolid foods were added to her formula. On examination she was underweight and anemic. No other congenital anomalies or significant physical findings were noticed. Meticulous work up of her complaint by several physicians during this long period by frequent barium studies and endoscopic examination could not establish any definitive diagnosis. Endoscopic evaluation demonstrated a rigid stenosis at the distal end of the esophagus. No evidence of reflux esophagitis or hiatal hernia was found. Endoscopic esophageal biopsy revealed normal mucosa without any evidence of inflammation or fibrosis, although it was difficult to take biopsy from the actual stenotic portion. Barium swallow demonstrated an abrupt narrowing at the distal end of the esophagus with proximal dilatation (Fig. 1). Fluoroscopy demonstrated fixed stenosis and no peristaltic movements were noticed on swallowing. As previous attempts of dilatation yielded no improvement, the patient was referred for surgery.

The esophagus was explored through a left anteromedial thoracic incision and a firm stenosis in the distal end of the esophagus just above the diaphragm was found. Stenosis was too rigid to be dilated by a Foley catheter, therefore the stenotic portion of the esophagus was resected and an esophago-gastric anastomosis was performed in one layer. Postoperative course was uneventful.
revealed a satisfactorily patent anastomosis. The child did well during the past nine months after operation. She was taking normal diet without any difficulty and gained weight.

Pathologic examination

The grossly stenotic part of the esophagus was firm with an external diameter of 8 mm. On transverse section internal diameter was 3 mm. Macroscopically, the mucosa was found to be normal and a firm area was felt in the esophageal wall but it was difficult to identify cartilage. Microscopically, in the stenotic zone, however, the architecture of the esophageal wall was grossly disorganized but mucosa and lamina propria were unremarkable. The submucosa and inner muscular layer contained a plate of hyaline cartilage extending over one third the circumference of the wall. Many seromucinous glands were scattered in the submucosa and deep into disorganized muscular layers (Fig. 2). Some small cysts lined by columnar epithelium, sometimes pseudostratified and ciliated and surrounded by a lymphocytic cuff, were associated with the glands. Above and below the lesion the esophagus was normal without any evidence of fibrosis.

DISCUSSION

Careful review of the literature revealed that despite the rarity of tracheobronchial remnants in the esophageal wall, it appears to be one of the most...
common causes of congenital rigid stenosis of the distal
part of the esophagus during early childhood. Most
cases have been reported from Japan, however they
were often misdiagnosed and resulted in delayed or
mismanagement despite their distinct clinicopatho-
logic features. Most cases presented during the pediatric
age group (83.4%) (less than 6 months 3.3%, 6-24
months 56.6%, 2-8 years 23.3% and more than 8 years
16.6%). Interestingly in Japanese cases males compris-
ed 80% of cases, while in cases from other parts of the
world 74% of patients were female. The most common
presenting symptoms were dysphagia (83%), reg-
urgitation (61%), or both, usually beginning at the time
of weaning (53%), otherwise during early childhood
(96%). Noticeably in cases presenting during adu-
lthood the cartilage was absent from lesions (Table I)
with few exceptions. Eighty three percent of children
were found to be underweight and malnourished be-
cause of frequent vomiting and dysphagia. Pulmonary
infections were noticed in 23.3% of cases at the time of
presentation. Other congenital anomalies were encoun-
tered in 30% of cases (Table I). Nishana et al19 reported associated anomalies in 17.3% of cases
and stated that the evidence of associated anomalies in
congenital esophageal stenosis due to tracheobronchial
remnants was significantly lower than that in
esophageal atresia. Tracheoesophageal fistula, esophageal atresia, Down's syndrome and anovestibu-
lar fistula were the most frequently noticed anomalies
associated with tracheobronchial rests in the
esophagus.19

The esophogram invariably demonstrates
characteristic narrowing of the distal portion of the
esophagus with proximal dilatation. In some cases

Table I.

<table>
<thead>
<tr>
<th>Ref.</th>
<th>Age/Sex</th>
<th>Age at onset of symptoms</th>
<th>Site of stenosis</th>
<th>Other anomalies</th>
<th>Major histologic components</th>
<th>Operative procedures</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.</td>
<td>19 yrs/F</td>
<td>?</td>
<td>Distal end</td>
<td></td>
<td>+ + +</td>
<td>Postmortem diagnosis.</td>
</tr>
<tr>
<td>3.</td>
<td>43 yrs/M</td>
<td>28 yrs</td>
<td>Distal end</td>
<td></td>
<td>+ + +</td>
<td>Extramureal excision</td>
</tr>
<tr>
<td>4.</td>
<td>52 yrs/M</td>
<td>3 yrs</td>
<td>Distal end</td>
<td></td>
<td>+ + +</td>
<td>Resection</td>
</tr>
<tr>
<td>5.</td>
<td>57 yrs/F</td>
<td>Childhood</td>
<td>Lower third</td>
<td></td>
<td>+ + +</td>
<td>Resection</td>
</tr>
<tr>
<td>6.</td>
<td>49 yrs/F</td>
<td>Birth</td>
<td>Lower third</td>
<td></td>
<td>+ + +</td>
<td>Resection</td>
</tr>
<tr>
<td>7.</td>
<td>10 mo/F</td>
<td>4 mo</td>
<td>Distal end</td>
<td></td>
<td>+ + +</td>
<td>Resection</td>
</tr>
<tr>
<td>8.</td>
<td>8 mo/F</td>
<td>4 mo</td>
<td>Lower end</td>
<td></td>
<td>+ + +</td>
<td>Resection</td>
</tr>
<tr>
<td>9.</td>
<td>14 mo/F</td>
<td>6 mo</td>
<td>Distal end</td>
<td></td>
<td>+ + +</td>
<td>Extramural excision</td>
</tr>
<tr>
<td>10.</td>
<td>17 mo/M</td>
<td>7 mo</td>
<td>Distal end</td>
<td></td>
<td>+ + +</td>
<td>Resection</td>
</tr>
<tr>
<td>11.</td>
<td>4 yrs/M</td>
<td>6 mo</td>
<td>Distal end</td>
<td></td>
<td>+ + +</td>
<td>Resection</td>
</tr>
<tr>
<td>12.</td>
<td>5 yrs/M</td>
<td>1 yr</td>
<td>Distal end</td>
<td></td>
<td>+ + +</td>
<td>Resection</td>
</tr>
<tr>
<td>13.</td>
<td>1 yr/F</td>
<td>6 mo</td>
<td>Lower third</td>
<td></td>
<td>+ + +</td>
<td>Resection</td>
</tr>
<tr>
<td>14.</td>
<td>1 day/F</td>
<td>7 mo</td>
<td>Distal end</td>
<td></td>
<td>+ + +</td>
<td>Cervicaloesophageotomy</td>
</tr>
<tr>
<td>15.</td>
<td>8 yrs/F</td>
<td>7 mo</td>
<td>Multiple*</td>
<td></td>
<td>+ + +</td>
<td>Resection</td>
</tr>
<tr>
<td>16.</td>
<td>11 mo/F</td>
<td>5 mo</td>
<td>Lower third</td>
<td></td>
<td>+ + +</td>
<td>Postmortem diagnosis.</td>
</tr>
<tr>
<td>17.</td>
<td>14 yrs/M</td>
<td>18 mo</td>
<td>Lower third</td>
<td></td>
<td>+ + +</td>
<td>Resection</td>
</tr>
<tr>
<td>18.</td>
<td>20 mo/M</td>
<td>9 mo</td>
<td>Distal end</td>
<td></td>
<td>+ + +</td>
<td>Resection</td>
</tr>
<tr>
<td>19.</td>
<td>19 mo/M</td>
<td>4 mo</td>
<td>Distal end</td>
<td></td>
<td>+ + +</td>
<td>Resection</td>
</tr>
<tr>
<td>20.</td>
<td>4 yrs/M</td>
<td>8 mo</td>
<td>Distal end</td>
<td></td>
<td>+ + +</td>
<td>Resection</td>
</tr>
<tr>
<td>21.</td>
<td>13 mo/F</td>
<td>7 mo</td>
<td>Distal end</td>
<td></td>
<td>+ + +</td>
<td>Resection</td>
</tr>
<tr>
<td>22.</td>
<td>7 mo/?</td>
<td>7 mo</td>
<td>Distal end</td>
<td></td>
<td>+ + +</td>
<td>Resection</td>
</tr>
<tr>
<td>23.</td>
<td>8 yrs/F</td>
<td>Birth</td>
<td>Lower third</td>
<td></td>
<td>+ + +</td>
<td>Resection with Nissen</td>
</tr>
<tr>
<td>24.</td>
<td>20 mo/F</td>
<td>6 mo</td>
<td>Distal end</td>
<td></td>
<td>+ + +</td>
<td>Resection with Fundoplication</td>
</tr>
<tr>
<td>25.</td>
<td>6 mo/M</td>
<td>2 mo</td>
<td>Distal end</td>
<td></td>
<td>+ + +</td>
<td>Resection with Pyloroplasty</td>
</tr>
<tr>
<td>26.</td>
<td>6 yrs/F</td>
<td>6 yrs</td>
<td>Lower third</td>
<td></td>
<td>+ + +</td>
<td>Resection</td>
</tr>
<tr>
<td>27.</td>
<td>15 mo/F</td>
<td>14 mo</td>
<td>Distal end</td>
<td></td>
<td>+ + +</td>
<td>Resection</td>
</tr>
<tr>
<td>28.</td>
<td>20 mo/M</td>
<td>Birth</td>
<td>Distal end</td>
<td></td>
<td>+ + +</td>
<td>Resection</td>
</tr>
<tr>
<td>Present case</td>
<td>17 mo/F</td>
<td>6 mo</td>
<td>Distal end</td>
<td></td>
<td>+ + +</td>
<td>Resection</td>
</tr>
</tbody>
</table>

*Small ventricular septal defect, pulmonic valvular stenosis and physiologic two chambered right ventricle.
**Esophageal atresia and tracheo-esophageal fistula
***Tracheo-esophageal fistula, esophageal atresia and rectal agensis
****Esophageal atresia, tracheo-esophageal fistula, duplication of duodenum and pancreatic cyst.
linear tracks of barium representing ducts of tracheobronchial glands that extend from the stenotic area were noticed.4,12,15 In contrast to achalasia, cinefluoroscopy revealed fixed stenosis.10,15 Endoscopic findings were available only in 13 cases and all patients demonstrated firm and rigid stenosis without any evidence of reflux esophagitis or hiatal hernia. Dilatation was attempted in 15 cases without rewarding results and proved fatal in one case.13 The most common erroneous diagnoses were achalasia,7-9,14,16,17 and inflammatory strictures.12,13,18 While other reports did not mention any specific clinical diagnosis, in none of the reported cases was tracheobronchial rest suspected the cause of stenosis.

The grossly stenotic part was harder than a fibrotic stricture, measuring 1-5 cm in length and with an internal diameter of up to 3 mm. No mucosal ulceration was found. Microscopically, the lesion characteristically comprised of seromucinous glands (86.6\%) and small linear or crescentic plates of hyaline cartilage (86.6\%) either encircling the whole circumference of the esophagus or part of it, as seen in the tracheobronchial tree. Usually, cyst-like structures lined by respiratory epithelium with lymphoid mantle (66.6\%) and sometimes connected to the esophageal lumen through ducts were also present. In cases without cartilage, respiratory seromucinous glands were the convincing evidence to consider them as tracheobronchial remnants and resulted in less severe stenosis with delayed presentation.2,5,6 Ibrahim, et al18 considered lymphoid aggregates as part of a developmental anomaly rather than inflammation.11 In many cases patches of stratified ciliated columnar epithelium were found in the esophageal mucosa, which may present normally at birth.20 Reports with detailed microscopic descriptions of lesions including ours stressed on disorganization of the musculature of the stenotic esophagus because of the differential growth between the esophageal and respiratory tubes.7-9,11,18,19

differential diagnosis between congenital and acquired stenosis as well as achalasia of the cardia is of great importance as the treatment has to be arranged accordingly. The existence of other deformities, especially stenosis and atresia of the gastrointestinal tract, suggest the presence of congenital esophageal stenosis. An esophagram combined with cinefluoroscopic evaluation of esophagus was the most useful diagnostic measure to differentiate it from achalasia.

Stenosis due to tracheobronchial remnants does not dilate with swallowing and remains fixed,10 while in achalasia absence of stripping wave and uncoordinated esophageal contractions may be demonstrated.23 Endoscopic examination and biopsy confirms the absence of esophagitis and hiatal hernia and rules out inflammatory strictures. Unlike achalasia, esophageal webs, and fibromuscular stenosis, stenosis due to tracheobronchial remnants was resistant to dilatation, and invariably unable to relieve the obstruction. Sneed et al16 recommended surgical resection of the stenotic segment coupled with an antireflux procedure, if the gastroesophageal junction was removed. Overall, the prognosis was excellent if treated in proper time.

According to the most popular theory, its ment is related to the defective separation of embryonic respiratory tube from the primitive during early embryonic stage, resulting in the occurrence of tracheobronchial precursor cells in the wall of the esophagus and located in the distal part of esophagus because of the differential growth between the esophageal and respiratory tubes.7-9,11,18,19

\textbf{REFERENCES}

Tracheobroncheal Remnants

