Introducing Matrix Metalloproteinases as Crucial Targets for Intra-articular Laser Therapy in Patients with Synovial Fluid of Knee Osteoarthritis

Reza M Robati1, Zahra Razzaghi2* , Babak Arjmand3,4, Mostafa Rezaei Tavirani5, Fatemeh Sheibani2

Received: 15 Jul 2023 Published: 4 Dec 2023

Abstract
Background: Many older people have knee osteoarthritis (OA). The patients are faced with pain and disability in movement. Given the challenging lifestyle of the patients, finding an efficient therapy approach is necessary. Since low-level laser therapy applies to the treatment of many diseases, it seems it can be a suitable option for the treatment of knee OA. The present study aimed to evaluate the molecular mechanism of laser therapy on knee OA via a protein expression change study.

Methods: The present study examines the gene expression profile of patients with OA in the knee using bioinformatics. The protein expression change profile of synovial fluid of knee OA patients is extracted from the literature and is analyzed based on the rate of expression and interactions between the differentially expressed proteins (DEPs). The results are compared with the DEPs of similar tissue of the treated knee OA patients (from published documents) after laser therapy.

Results: Apolipoprotein B (APOB) and matrix metalloproteinase 2 (MMP2) were determined as the hub bottlenecks of the protein-protein interaction (PPI) network of synovial fluid of knee OA patients. MMP2, complement 5, transthyretin, and apolipoprotein A-1 from laser-treated patients were related to the PPI network of knee OA patients. The reduction of Interleukin-6 activity was highlighted as a critical event as a function of laser on the human body.

Conclusion: In conclusion, it was noted that the main phenomenon associated with laser therapy-induced improvement in the condition of knee OA patients is the downregulation of MMP2.

Keywords: Low-Level Laser Therapy, Knee Osteoarthritis, Proteomics, MMP2, Network Analysis

Conflicts of Interest: None declared
Funding: None

*This work has been published under CC BY-NC-SA 1.0 license.

Copyright© Iran University of Medical Sciences

Introduction
Older people are facing some diseases such as osteoarthritis (OA), a degenerative joint disease that is accompanied by pain and disability. Synovial thickening, destruction of the articular cartilage, and alterations of the subchondral bone cruciate ligament, and characteristic changes of the meniscus are highlighted as a stamp of this joint disease (1-3). It is reported that 37% of 60-year-old people or older have knee OA. This disease is more common in women relative to men (4). Light-to-moderate physical activity as nonpharmacological management of knee OA is recommended (5). The efficacy of low-level laser therapy to treat knee OA in patients has been investigated by

↑What is “already known” in this topic:
Many older people have knee osteoarthritis (OA). These patients are faced with pain and disability in movement. The patients’ demanding lifestyle implies trying to find an effective therapeutic method.

→What this article adds:
The present study aims to evaluate the molecular mechanism of laser therapy on knee OA via a protein expression change study. It was highlighted that one of the main methods by which laser therapy improves the condition of knee OA patients is through the downregulation of MMP2.
Matrix Metalloproteinases in Laser Treatment of Patients with Knee OA

Several researchers (6, 7).

Different types of diseases are targeted via laser therapy and the findings have satisfied the experts. However, laser therapy's effectiveness on some human diseases is clear, and the molecular mechanism perspective needs more investigation (8-10). Proteomics, as a useful tool, is applied to detect various aspects of low-level laser therapy (11). OA is one of the numerous diseases that is assessed via proteomics. Liao et al published a document about proteomic analysis of synovial fluid to detect OA biomarkers (12). In such studies, many differentially expressed proteins that discriminate patients from healthy people are introduced via laser therapy (13).

Network analysis is an excellent method to screen proteomic data to introduce the critical differentially expressed proteins (DEPs) linked to the research disease since many DEPs related to the studied disease are identified using proteomics and bioinformatics (14). In such analysis, the critical proteins that control central biological processes and molecular functions are highlighted as biomarkers. The protein-protein interaction (PPI) network analysis is a method that is applied widely to analyze such complex experiments (15). Network analysis is applied to detect laser therapy efficacy for several diseases (16). Several actions such as activation, inhibition, and coexpression relationships between some proteins can be identified via PPI network analysis (17).

Chen et al published a document about intra-articular laser therapy as a possible method to treat knee OA in elderly patients. As it is reported in this investigation, 19 patients with moderate degree of knee OA received low-level laser therapy (red laser followed by infrared irradiation) under ultrasound guidance via intra-articularly mode. They found that after laser therapy, the concentrations of matrilin, transthyretin (TTR), complement 5, osteoprotegerin (OPG), and immunoglobulin kappa chain were changed 2-fold (FC >2) as upregulated proteins and apolipoprotein A-1 (APOA1), cartilage acidic protein 1, immunoglobulin kappa chain, and matrix metalloproteinase (MMP) as downregulated proteins, respectively (1).

According to Neserin et al, 7 patients—four men and 4 women—had early-stage OA synovial fluid proteome profiling compared to 13 controls (5 men and 8 women). A total of 156 DEPs (95% CI, the range of alteration that included maximum upregulation and downregulation, respectively. As it is depicted in Figure 1, GPX3 and PGS2 are the 2 proteins that are characterized with maximum and minimum upregulation and downregulation, respectively. Among the 156 queried DEPs, 95 individuals were identified via PPI network analysis (17). A total of 156 DEPs of proteomics profiling of synovial OA are investigated via the STRING database by Cytoscape software Version 3.7.2 to construct a PPI network. Because of the weak interactions between the queried DEPs, the optimum number of first neighbors from the STRING database were added to the DEPs and the network was renewed. The top 10% of the queried DEPs based on the degree value and the top 5% of DEPs considering betweenness centrality were identified as the hub and bottleneck nodes, respectively. The common hubs and bottlenecks were identified as hub bottlenecks.

Using the Cytoscape program CluePedia Version 1.5.7, an action map was made in order to determine potential connections between LRPs and the newly added initial neighbors. An action map was created for LRPs and OAPs in the comparable performance.

Results

Since the rate of fold change is an important criterion, the 10 extremely upregulated and downregulated proteins of OAPs were selected for more investigation (Figure 1). As it is depicted in Figure 1, GPX3 and PGS2 are the 2 proteins that are characterized with maximum and minimum upregulation and downregulation, respectively. The 106 DEPs identified via STRING database. The network—including

Figure 1. Top 10 extremely upregulated- and downregulated proteins among 156 significant DEPs among OAPs. P < 0.01.
24 isolated proteins, 2 paired DEPS, and a main connected component of 69 nodes which were connected via 225 edges—was formed. Analyses revealed that adding 60 first neighbors to the queried DEPs minimized the number of the isolated DEPs. The renewed network—including 10 isolated DEPs and a main connected component of 145 nodes (85 queried DEPs plus 60 added first neighbors) which were connected by 2613 edges—was constructed. Among the queried DEPs, APOB and MMP2 were determined as hub bottlenecks (Table 1).

To screen the “laser related proteins,” the 8 proteins of LRPs plus 60 added first neighbors were comprised in a regulatory network. Three LRPs plus 48 added first neighbors were included in the main connected component (Figure 2). As it is shown in Figure 2, three proteins of LRPs are presented in the action map. Because of the unclear details of connections, these 3 proteins and their first neighbors are presented in the Figure 3 for more assessment. In the next step, an action map—including 8 LRPs proteins plus 156 OARs proteins—was constructed. The interacted proteins are presented in the Figure 4.

Table 1. Two hub bottlenecks of OAPs PPI network. The nodes are selected among the queried DEPs. FC > 1 was considered as significant fold change.

<table>
<thead>
<tr>
<th>Display name</th>
<th>Degree</th>
<th>Betweenness centrality</th>
<th>FC</th>
</tr>
</thead>
<tbody>
<tr>
<td>APOB</td>
<td>67</td>
<td>0.019</td>
<td>2.15</td>
</tr>
<tr>
<td>MMP2</td>
<td>40</td>
<td>0.016</td>
<td>1.91</td>
</tr>
</tbody>
</table>

Figure 2. The main connected component of the action map of the LRPs plus the 60 added first neighbors. The LRPs (important nodes) are labeled with black color. Red, yellow, and green links refer to inhibition, expression, and activation actions respectively.

Figure 3. A subnetwork of LRPs plus the 60 added first neighbors action map, including TTR, C5, and APOA1 and their first neighbors. Red, yellow, and green refer to inhibition, expression, and activation actions respectively.

Figure 4. Action map of the LRPs plus the ORPs. The isolated individuals are removed. Red, yellow, and green refer to inhibition, expression, and activation actions respectively.

Discussion

Chen et al investigation led to the introduction of intra-articular laser therapy as a possible useful therapeutic method to treat knee OA. Proteomics as a valuable technique is performed in the Chen et al assessment to confirm the validity of knee laser therapy (1). In the present examination, 3 sets of data—including ORPs, LRPs, PPI network finding (the results related to the queried DEPs and the added first neighbors)—can be integrated to find a clear prospective from molecular events in patients after laser therapy. As it is presented in the Figure 1, PGS2, CXCL7, SODE, MYOC, MDHC, TPIS, S10A6, CATB, ENOA, and CILP1 are the extremely downregulated proteins in knee synovial fluid of the patients. GMFB, FA5, APOF, MYLK, IBP3, ZHX3, DCD, POSTN, HRG, and GPX3 are appeared as the top upregulated genes. There is no common protein between this set of proteins and the introduced LRPs. It can be concluded that the introduced LRPs are not important in knee OA based on expression change criterion. According to earlier analyses, the rate of expression change can be a valuable tool for understanding molecular mechanisms, but it is insufficient for comprehending entire molecular events (19).

PPI network assessment showed APOB and MMP2 are 2 hub bottleneck nodes among ORPs. Since the hub bottlenecks are used as key nodes to interpret the studied networks, it seems that APOB and MMP2 are 2 critical players in knee OA (20, 21). As it is tabulated in Table 1, these proteins are upregulated about 2-fold. APOB and MMP2 are ranked as 70th and 95th upregulated proteins, respectively. Comparison between LRPs and the hub bottlenecks of ORPs indicates that MMP2 is common between the compared proteins. Based on the study by Chen et al, MMP2 is downregulated after laser therapy (1). The results provide a clear understanding of the involvement of MMP2 in knee OA; patients have overexpressed MMP2, which is downregulated following laser therapy.
and appears to be a crucial protein in the progression of knee OA.

We added 60 first neighbors to the queried DEPs of ORPs to form the PPI network. Results indicates APOA1 and TTR are common between the first neighbors and LRPs. TTR and APOA1 are upregulated and downregulated proteins among LRPs, respectively. In Figures 2 and 3, interactions of TTR, APOA1, and C5 protein with the members of added first neighbors is presented. As it is depicted in these figures, APOA1 activates IL6. It is reported that IL6 is a crucial player in OA (22). It can be concluded that downregulation of APOA1 is accompanied with decrement of IL6 activity. The inverse role of APOA1 and TTR has a coexpression change with IL6; thus, its upregulation increases level of IL6. The beneficial effects of laser therapy in treating knee OA are correlated with favorable clinical outcomes (1).

Another role of MMP2 in the progression of knee OA is illustrated in the Figure 4. There is a reciprocal activation relationship between POSTN and MMP2. As it is shown in the Figure 1, POSTN is the third ranked upregulated proteins in ORPs. Figure 4 illustrates how the addition of POSTN to activate MMP2 boosts its expression. Consequently, one important step in slowing the advancement of knee OA is the downregulation of MMP2 achieved using laser therapy. Previous investigations have shown the significance of the fall in MMP2 serum level in the prevention of knee OA (23).

In conclusion, intra-articular laser therapy regulates knee OA in a multifaceted manner. The MMP family of proteins emerged as the primary target for intra-articular laser therapy of knee OA. In patients with OA, downregulation of MMP2 is associated with a significant change in molecular function. In order to determine the most efficient therapy approach, it is advised that the effects of low-level lasers be investigated in the presence of MMP2 inhibitors.

Conflict of Interests

The authors declare that they have no competing interests.

References