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Abstract

Background: Parkinson's disease (PD) is a degenerative condition of the nervous system that is primarily characterized by a gradual
decline of motor function. For patients with suboptimal response to medical treatment, deep brain stimulation (DBS) is a well-
recognized surgical approach. This systematic review evaluates the performance of machine learning (ML) models in classifying
patients or symptoms or to predict postoperative outcomes following DBS in PD.

Methods: PubMed, Scopus, Cochrane, Embase, and Web of Science were searched in accordance with PRISMA through December
31, 2024. We included original human studies of DBS-treated PD in which ML used clinical (non-imaging) features to classify patients
or symptoms, or to predict postoperative outcomes. Cohort, cross-sectional, and case-series designs were eligible. Imaging-based
prediction studies were excluded.

Results: From 961 records, eight studies (n=555 patients) met the inclusion criteria. Three studies performed preoperative-to-
postoperative outcome prediction, and five focused on symptom or patient classification. Targets included motor severity, speech
outcomes, and gait-related measures. The Support Vector Machine (SVM) was the most frequently applied ML model, followed by the
k-nearest neighbor, which was used in three studies. Commonly used assessment tools included the Mini-Mental State Examination
(MMSE), the Hoehn and Yahr Scale, and the Unified Parkinson's Disease Rating Scale (UPDRS).

Conclusion: This review highlights early but exploratory application of ML for patients' or symptoms classification and predicting
clinical outcomes and adverse events following DBS using preoperative clinical data. However, the current evidence is sparse, single-
center, and methodologically heterogeneous, with limited external validation. Therefore, clinical translation remains premature.
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Introduction

PD is a neurodegenerative disorder impacting nearly 1%  is medical therapy in almost all patients. However, poor
of people worldwide who are aged 60 years or older (1).  medication response can lead patients to surgical ap-
PD manifests with motor and non-motor symptoms, in-  proaches to control their symptoms and increase their in-
cluding tremor, bradykinesia, rigidity, depression, and  dependence (5). DBS is a widely adopted surgical tech-
cognitive decline (2, 3). Being affected by these symp-  nique used in PD patients to help control their symptoms
toms significantly lowers the individual's quality of life  (6). The operation is performed by implanting electrodes
over time and disease progression (4). First-line treatment  into specific brain areas responsible for movement con-
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trol; these areas include the subthalamic nucleus (STN),
globus pallidus internus (GPI), and ventral intermediate
nucleus (VIN) (7, 8). Despite the benefits DBS offers, it
can also lead to unwanted outcomes, especially due to
unintended stimulation of nearby brain regions. Therefore
some patients do not receive much benefit from this ap-
proach (8).

Although a considerable number of studies have at-
tempted to identify factors that predict treatment success,
clinicians still struggle to forecast which patients will ben-
efit most (7, 8). One reason is that DBS effects depend on
very small differences in electrode position, while elec-
trode localization and image registration can introduce
meaningful uncertainty, which makes reliable prediction
harder (9, 10). In addition, patients do not respond in the
same way, outcomes can vary widely across individuals,
and factors such as clinical and genetic subtypes may con-
tribute to this heterogeneity (11, 12). Results also differ
across centers because practices vary in patient selection,
target choice, surgical approach, and postoperative man-
agement, which limits how well prediction models gener-
alize (13). Furthermore, studies often use different end-
points and responder definitions, and even common clini-
cal tests like the levodopa challenge do not always predict
DBS benefits well when evaluated in broader datasets (14-
16). Therefore, the development of improved methods for
patient selection is critically needed.

Although DBS is an effective way for controlling motor
symptoms, predicting individualized outcomes is still a
significant challenge.

Conventional statistical techniques, such as logistic re-
gression, are commonly used for DBS outcome modeling,
but they can fall short when relationships between varia-
bles are complex and non-linear across patients.

Recent work has explored a range of ML-based model-
ing strategies using preoperative clinical and neuropsy-
chological features. As an example, Habets et al. (17) de-
veloped a multivariable logistic regression model to iden-
tify weak responders one year after STN-DBS. While
promising, the evidence remains limited and requires ex-
ternal validation. This study suggests that ML-based ap-
proaches may offer added value for DBS outcomes pre-
diction compared with conventional models, although
evidence is still limited and model performance is not
consistently validated across independent cohorts.

Beyond routine clinical assessments, non-imaging data
sources such as intraoperative microelectrode recordings
and wearable or sensor-derived features have been ex-
plored in ML studies in PD and DBS research. Park et al.
(18), for instance, used deep learning on intraoperative
microelectrode recordings to model DBS-related clinical
outcomes. Similar non-imaging directions have also been
explored using intraoperative recordings and wearable or
sensor-derived features, although endpoints and evalua-
tion vary across studies (19-21).

In this context, various recent studies have investigated
the application of ML techniques to predict clinical out-
comes of DBS in patients with PD (7, 17, 19). ML, a sub-
field of artificial intelligence (AI), identifies patterns in
complex datasets to generate predictive insights (22). In
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DBS interventions, ML can be employed to model associ-
ations between preoperative clinical variables and treat-
ment efficacy (7, 22). The approaches in ML are mainly
grouped into supervised, unsupervised, semi-supervised,
and reinforcement learning. Within the framework of su-
pervised learning, commonly applied predictive tech-
niques include Logistic Regression, Naive Bayes, Random
Forest (23), SVM, Neural Network, Deep Neural Net-
work, and Decision Tree. Supervised learning predicts the
outcome using labeled datasets, whereas unsupervised
learning extracts patterns from unlabeled input variables.
Comparing the statistical parameters of different ML
models can help identify the efficiency of each model in
clinical practice applications (22).

To date, few reviews have specifically focused on ML
models that use clinical and non-imaging predictors of
DBS outcomes in PD, and prior work has typically been
narrative in scope with limited formal quality assessment.
Therefore, this study aims to synthesize studies that ap-
plied machine learning to either classify symptoms or pa-
tient subgroups in DBS-treated PD cohorts, predict post-
operative clinical outcomes using preoperative clinical
and non-imaging features.

Methods

The design and reporting of this research were conduct-
ed in full compliance with the PRISMA 2020 guidelines
for systematic reviews and meta-analysis to uphold high
standards of transparency and methodological soundness.

Literature Search Plan and Data Sources

A structured and comprehensive search of the existing
scientific literature was carried out across five electronic
databases: PubMed, Scopus, Cochrane, Embase, and Web
of Science. The search strategy utilized a mix of key-
words, MeSH terms, and Boolean operators (AND, OR)
related to "artificial intelligence," "machine learning,"
"Parkinson's disease," "idiopathic Parkinson's disease,"
"deep brain stimulation," and "DBS." All records included
from database inception through December 31, 2024, were
considered without restrictions on publication date. An
independent screening of the reference lists from eligible
records was conducted to find any potentially relevant
papers missed in the initial search.

Study selection

For study selection, all identified citations were trans-
ferred into EndNote version 20 to facilitate organized ref-
erence handling. After removing duplicate entries, two
independent reviewers separately screened the titles and
abstracts during the initial evaluation process. Following
this, the full texts of the articles were assessed according
to previously defined eligibility criteria. Disagreements
were addressed by a third reviewer.

Eligibility criteria

Eligibility was limited to English-language primary
studies involving human subjects diagnosed with idio-
pathic PD who had undergone DBS. ML algorithms were
applied using clinical, neurophysiological, wearable, or
sensor-derived features to either classify patients or symp-
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toms in DBS-treated PD cohorts or model postoperative
outcomes. We required that participants had undergone
DBS, but did not restrict analysis to strictly preoperative
measurements when the ML task involved clinically rele-
vant classification in DBS-treated populations. Eligible
study designs included cohort studies, cross-sectional
studies, and case series. We also included studies that used
ML to predict postoperative adverse outcomes.

The excluded studies were non-English publications,
studies on animal models, studies with fewer than four
subjects, case reports, review articles, letters to the editor,
and commentaries. Additionally, studies that included
patients with PD without a confirmed diagnosis of idio-
pathic PD or those who did not receive DBS were exclud-
ed. Furthermore, studies in which ML models used imag-
ing data instead of clinical symptoms as predictive varia-
bles were also excluded.

Data extraction

Two independent reviewers extracted and aligned data
from the included studies, organizing the information into
structured Excel documents. The dataset consisted of the
author's name, study population size, demographic fea-
tures (age and sex), country of origin, preoperative clinical
symptoms used for prediction, assessment tools, ML sub-
types, predicted postoperative symptoms, and outcome.

Quality Assessment

The studies included were evaluated for their methodo-
logical quality with the help of the Quality Assessment of
Diagnostic Accuracy Studies-2 (QUADAS-2) tool. The
QUADAS-2 instrument evaluates potential risk of bias
across four areas: participant selection, assessment of the
index test, appraisal of the reference standard, and the
management of study flow and timing. It also considers
concerns regarding applicability (24). Two reviewers in-
dependently assessed each study, and disagreements were
resolved by discussion with a third reviewer. Given that
QUADAS-2 was specifically created for diagnostic test
accuracy studies, we utilized it here as a structured
framework to summarize key sources of bias. Findings
were interpreted cautiously in light of the specific chal-
lenges of ML-based modeling studies. We acknowledge
that tools such as PROBAST have been specifically de-
veloped for assessing prediction model studies. However,
due to incomplete reporting and heterogeneous study de-
signs, a full PROBAST assessment was not feasible.
QUADAS-2 was therefore used as a pragmatic framework
to summarize major sources of bias, and all interpretations
were made cautiously in light of ML-specific limitations.

Results

Selection of Studies

The process of selecting studies, following the PRISMA
2020 guidelines, is depicted in Figure 1. A total of 961
citations were retrieved from electronic database searches.
Following the elimination of 307 duplicate entries, the
remaining studies were screened using their titles and ab-
stracts. Following the screening process, eight studies met

all the inclusion criteria and were selected for the final
analysis.

Characteristics of the Studies

The combined study population consisted of 555 pa-
tients diagnosed with PD. Table | presents an overview of
the main features of the selected studies. The UPDRS was
the most frequently used assessment tool, used in 5 stud-
ies. The predicted outcomes varied across the studies and
included motor symptoms (three studies) and speech and
gait impairment (two separate studies). Among the ML
methods utilized, SVM was the most common, applied in
four studies out of the eight, followed by the k-nearest
neighbor algorithm used in 3 studies.

Risk of Bias and Relevance Evaluation

The results of the QUADAS-2 evaluation are shown in
Figures 2 and 3. The most frequent risk of bias was in the
index test domain, followed by patient selection, where
methodological details were often inadequately described
or justified. One study showed high applicability concerns
in the patient selection domain, while the remaining stud-
ies demonstrated no major issues. These findings guided
our interpretation of the evidence and highlighted meth-
odological weaknesses that challenge the generalizability
of the results.

The bar chart displays how the included studies were
rated for risk of bias and applicability (high/red, un-
clear/yellow, and low/green) across the four domains of
the QUADAS-2 framework: patient selection, index test,
reference standard, and study flow and timing

Each domain is evaluated for risk of bias and applicabil-
ity in the eight included studies. Color coding reflects risk
status: green for minimal concern, yellow for intermediate
or uncertain concern, and red for elevated concern.

For clarity, we first distinguish between cross-sectional
classification tasks and longitudinal prediction of postop-
erative outcomes. Within each category, results are orga-
nized by clinical domain (motor, speech, gait, and cogni-
tion). Studies by Angeles et al (20), Yohanandan et al.
(21), Suppa et al. (25), Watt et al. (26), and Sabo et al.
(27) are symptom and patient classification studies. Fur-
thermore, studies by Alhourani et al. (28), Habets et al.
(17), and Chang et al. (29) are postoperative outcome pre-
diction studies.

Synthesized Findings
Because of substantial methodological variability across
the included studies, including differences in ML algo-
rithms, input features such as clinical and wearable data,
outcome measures, and performance metrics such as accu-
racy, sensitivity, and specificity, F1 score, and k, a quanti-
tative meta-analysis was not feasible. Instead, we adopted
a structured approach. Findings were organized by out-
come domains, namely motor symptoms, speech and
voice, verbal fluency, gait, and cognitive outcomes. With-
in each domain, we systematically described the type of
input variables, ML models applied, and the main predic-
tive performance reported in the studies. This resulted in a
clear and organized summary of the evidence, while ac-
http://mjiri.ilums.ac.ir
Med J Islam Repub Iran. 2025 (26 Dec); 39:164. 3



http://dx.doi.org/10.47176/mjiri.39.164
https://mjiri.iums.ac.ir/article-1-9920-en.html

[ Downloaded from mjiri.iums.ac.ir on 2026-01-30 ]

[ DOI: 10.47176/mijiri.39.164 ]

ML for DBS Outcomes in PD

Identification of studies via databases and registers ]
(o
= Records identified from:
o Databases (n=961)
§ Pubmed (n = 120): Records removed before
= Scopus (n = 298) E— screening:
c Embase (n = 348) Duplicate records (n = 307)
35 Web of Science (n = 191)
Cochrane Library (n= 4)
—/
v
)
Records screened > Records excluded
(n =654) (n = 626)
v
Reports sought for retrieval o | Reports not retrieved
2| | (h=29) >l n=0)
=
[
2
O
(7]
;'\r’]eg(;rg assessed for eligibility L 5 Reports excluded:
Studies did not report the
relevant outcome of interest
(n=11)
Participants did not meet the
inclusion criterion (n =2)
review (n =3)
v congress abstract (n=4)
. §
2 o o
° Studies included in review
S (n=8)
=
 S—

Figure 1. Diagrammatic representation of the literature selection workflow guided by the PRISMA 2020 guidelines.

knowledging the heterogeneity and limitations of the
available data.

Motor symptoms

Two studies explored the use of wearable device sensor
data to predict motor symptom severity using standardized
clinical scales such as the UPDRS and the Bain-Findley
Tremor Rating Scale (BTRS). Angeles et al. (20) exam-
ined 13 PD patients who underwent DBS and three
healthy controls using wearable devices placed on their
more affected arms. The sensor data were processed to
calculate the UPDRS scores. After that, the correlation
was assessed using different types of ML (Simple trees,
linear SVM, and fine k-nearest neighbors (KNN)) with
clinician feedback. The fine KNN model achieved very
high accuracies across rigidity and bradykinesia subscores
(up to 100% for elbow rigidity), while linear SVM per-
formed best for postural tremor (82.9%).

In a related study, Yohanandan et al. (21) used the
BTRS rather than the UPDRS for tremor evaluation. They
found that random forest ML classifiers achieved the
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highest agreement with clinical scores (kw = 0.81). These
findings suggest that ML models may, in principle, ap-
proximate clinician-rated motor scores from wearable
sensors, but the evidence remains strictly exploratory,
with no external validation and considerable risk of over-
fitting. In another study, a logistic regression model was
developed to identify weak responders to STN-DBS using
preoperative variables in addition to neuropsychological
variables. The model achieved a diagnostic accuracy of
78%, and high UPDRS scores in the on-medication state
emerged as the strongest predictor of post-DBS outcomes

7).

Speech and verbal fluency

Alhourani et al. (28) applied ML techniques to identify
neuropsychological predictors of postoperative verbal
fluency decline in a cohort of 90 PD patients who under-
went DBS. Among various linear and non-linear algo-
rithms, support vector regression (SVR) and the least ab-
solute shrinkage and selection operator were the most ef-
fective. Additionally, it was shown that greater deficits in
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Table 1. A Summary of the Studies Included Evaluating Machine Learning Models to Predict Clinical Outcomes After Deep Brain Stimulation in

Parkinson’s Disease

Author (year)

Predicted symptoms

ML type and measurement meth-
od

Results

Alhourani et al.
(2022)

Angeles et al. (2017)

Chang et al. (2022)

Habets et al. (2020)

Sabo et al. (2023)

Suppa et al. (2023)

Watt et al. (2024)

Yohanandan et al.
(2016)

Post-op Verbal fluency by
preoperative cognition

Bradykinesia, rigidity,
tremor

Cognition

UPDRS part [-IV, H&Y
scores, LEDD, and neuro-
psychological measures
evaluating executive func-
tion (in particular verbal
fluency (semantic and
lexical) and response inhibi-
tion).

Gait improvement

Voice impairment

Freezing of gait

Tremor

ML type: SVR, LASSO, extra-
trees, KNN, ordinary least
squares; Measurement method:
DKEEF, Digit span, QUIP

ML type: Supervision machine
learning (simple decision tree,
linear SVM, fine KNN; Meas-
urement method: UPDRS, senso-
ry system attached to arm

ML type: Nomogram; Measure-
ment method: MocA, MMSE,
HAMA, HAMD

ML type: multivariate logistic
regression; Measurement method:
UPDRS I-1V scores, H&Y scale,

LEDD, category fluency test,

verbal fluency test, interference
score of the Stroop Color Word
test.

ML type: Spatial-temporal graph
CNN; Measurement method:
MDS-UPDRS-gait scores, Video
recording

ML type: SVM, ANN; Measure-
ment method: Voice recordings,
UPDRS-III sub-item voice

ML type: KNN, Naive Bayes,
Random Forest, SVM; Measure-
ment method: MDS-UPDRS 111,
Wearing device, Video recording

ML type: RF, Multilayer percep-
tron, SVM, DT, Bayesian net-
work, radial basis network, Naive
Bayes; Measurement method:
BTRS, Wearing device, Video
recording

-Greater scores in pre-surgical fluency, digit span, education,
and MMSE are predictors of higher post-op verbal fluency
score
-higher frontal system deficit scores, older age, elevated
impulsive-compulsive disorder questionnaire scores, disease
duration, and behavioral inhibitory are predictors of lower
post-op verbal fluency scores
-ML, by using data recorded by a sensor system, with 90.9%
accuracy, could predict the clinician’s severity score
-the highest accuracy was for the fine KNN model for elbow
rigidity (100%), wrist rigidity (95%), bradykinesia (92.5%),
kinetic tremor (87.3%), rest tremor (87.8%)

-for postural tremor, the highest accuracy was for linear SVM
(82.9%)

ROC: 0.98, AUC:0.987
C-index:0.98; The nomogram effectively predicted the chance
of substantial cognitive enhancement one year after STN-
DBS in PD patients
Accuracy: 0.78, Sensitivity: 0.80, Specificity: 0.76,

AUC=0.79 (SD=0.08), PPV=0.63, NPV=0.88; These results

support the proof-of-concept that machine learning can pre-
dict individual motor outcomes after STN DBS for PD using

preoperative clinical variables.

Although the vision-derived model, developed using Parkin-
sonian gait data, failed to accurately predict MDS-UPDRS-
gait scores in a different cohort of PD patients, it nevertheless
captured weak but significant proportional fluctuations asso-
ciated with medication and DBS interventions.

From a clinical perspective, individuals with STN-DBS ex-
hibited more severe vocal disturbances than those managed
with oral pharmacotherapy. Using machine learning-based
analysis, it was possible to distinguish the vocal patterns of
the DBS group from those receiving medication with high
objectivity and precision
Machine learning algorithms show high effectiveness in
distinguishing individuals with advanced PD as freezers or
non-freezers using Stand-and-walk trials performed in the
absence of both pharmacological treatment and active stimu-
lation.

This study shows that the RF was the most accurate model
(kw = 0.81) at transforming tremor information into BTRS
ratings.

MDS-UPDRS, movement disorder society-Unified Parkinson's Disease Rating Scale; SVM, support vector machine; STN-DBS, subthalamic nu-
clei-deep brain stimulation; LEDD, levodopa equivalent daily dosage; BTRS, Bain-findley tremor rating scale; LASSO, ; KNN, K-Nearest Neigh-
bors; PD, parkinsonian disease; DT, decision tree; RF, Random forest; MMSE, Mini-Mental State Examination ;Y, year; H & Y, Hoehn and Yahr
Scale; ANN, artificial neural network; CNN, convolutional neural network; HAMA, Hamilton anxiety; HAMD, Hamilton depression; MocA, Mon-
treal Cognitive Assessment; QUIP, Questionnaire for Impulsive-Compulsive Disorders in Parkinson's Disease; DKEF, Delis-Kaplan Executive
Function; LASSO, Least Absolute Shrinkage and Selection Operator

the frontal system, older age, higher scores on the impul-
sive-compulsive disorder questionnaire, longer disease
duration, and increased behavioral difficulties were related
to a more serious risk of verbal fluency problem following
DBS.

In another study, Suppa et al. (25) used ML models to
compare voice impairment severity between 50 DBS-
treated PD patients and 51 patients treated with oral medi-
cation. They used UPDRS-III scores and ML-based voice
analysis for their assessment. The study reported that pa-
tients with STN-DBS exhibited greater voice impairment,
and the SVM model could successfully distinguish be-
tween the voice profiles of the DBS and medication

groups with high accuracy.

Gait impairment

Watts et al. (26) examined 21 individuals diagnosed
with idiopathic PD who received bilateral STN-DBS ther-
apy and had gait impairment defined by a score of 2 or 3
on the MDS-UPDRS gait component. The study em-
ployed wearable sensors and applied various ML models
(KNN, random forest, logistic regression, Naive Bayes,
and SVM) to distinguish between patients who exhibited
freezing of gait, known as freezers, and those who did not
have freezing of gait, known as non-freezers. All models
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Figure 3. Detailed QUADAS-2 risk of bias and applicability assessment for each included study.

revealed similar performance in classification.

In contrast, Sabo et al. (27) used a spatial-temporal
graph convolutional network (ST-GCN) model trained on
video recordings to predict gait scores in another group of
PD patients. The model could not reliably predict MDS-

6 http://mjiri.iums.ac.ir
Med J Islam Repub Iran. 2025 (26 Dec); 39:164.

UPDRS gait scores, but it successfully detected measura-
ble changes in response following both medication and
DBS. The observed discrepancies can be explained by
heterogeneity in data acquisition methods; Watt et al. (26)
used wearable sensors, while Sabo et al. (27) relied on
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video-based analysis.

Predicting DBS outcomes

Only a subset of the included studies directly modeled
postoperative DBS-related outcomes using preoperative
patient-level variables. Habets et al. (17) used a multivari-
able logistic regression approach based on preoperative
clinical and neuropsychological variables and reported an
accuracy of 0.78 with an AUC of 0.79 (PPV 0.63; NPV
0.88) for predicting postoperative outcomes. Chang et al.
(29) developed a nomogram model to predict postopera-
tive cognitive outcome and reported high discrimination
on ROC-based metrics (ROC 0.98; AUC 0.987; C-index
0.98). Alhourani et al. (28) investigated postoperative ver-
bal fluency outcomes using multiple regression ML ap-
proaches (SVR, LASSO, extra-trees, KNN), where pre-
operative cognitive and demographic measures were iden-
tified as relevant predictors. However, performance met-
rics were not consistently reported. Overall, while these
findings suggest potential for preoperative prediction, the
evidence remains preliminary due to limited reporting
consistency across outcomes and model evaluation, and
the lack of external validation in the included predictive
studies.

Discussion

Several prior systematic reviews have explored the ap-
plication of Al in managing patients with PD. They ex-
plore multiple key aspects, from identifying clinical symp-
toms and tracking disease progression to optimizing
treatment effectiveness by adjusting stimulation parame-
ters.

Huang et al. (30) executed a systematic review examin-
ing the use of wearable sensors in combination with ML.
The goal of this work was to detect freezing of gait and
predict fall risk in individuals diagnosed with PD. This
study revealed that these technologies effectively identify
freezing of gait episodes and predict fall risk with notable
efficacy. In Addition, Sun et al. (31) investigated the use
of ML in predicting cognitive impairment in PD following
DBS in a systematic review and meta-analysis. The study
considered various clinical parameters, including the
MMSE, Montreal Cognitive Assessment (MOCA), age,
sex, disease duration, and imaging data. The study demon-
strated that among the ML models, SVM achieved the
highest sensitivity (83%), while artificial neural networks
(ANN) showed the highest specificity (93%).

A review by Oliveria et al. (32) suggested that ML can
help create a personalized closed-loop DBS system by
analyzing different electrophysiological biomarkers,
thereby addressing the symptoms of individual PD pa-
tients. In this systematic review, our aim was to evaluate
how effective ML algorithms are in classifying patients
and their symptoms, and predicting how patients will re-
spond to DBS and forecasting the likelihood of adverse
events following DBS based on their preoperative clinical
profiles. We excluded studies that used imaging parame-
ters for assessments and focused instead on research
where ML models relied on clinical symptoms. This ap-

proach helps make the study's results more clinically fea-
sible.

Previous narrative reviews, such as Watts et al. (33),
have provided a broad overview of ML applications
across multiple aspects of DBS in PD, including candidate
selection, programming optimization, surgical targeting,
and mechanistic insights. While these reviews highlight
the interdisciplinary potential of ML in DBS, they did not
perform a structured quality assessment and were limited
to studies published up to 2020. In contrast, our systematic
review focuses specifically on patient or symptoms classi-
fication and clinically relevant predictors of postoperative
outcomes, applies formal risk of bias evaluation, and in-
corporates the most recent literature up to 2024, thereby
providing a more targeted and up-to-date synthesis.

Recent studies have suggested that ML may support
DBS-related decision-making; however, it is important to
distinguish between models using preoperative clinical or
wearable features and imaging-driven approaches that rely
on neuroimaging data and, in some cases, postoperative
electrode localization. Because these approaches address
different tasks and use different input modalities, their
reported performance is not directly comparable. Within
the studies reviewed, performance ranged from symptom-
severity classification using sensor-derived features (with
accuracies reported up to 90.9%) (20) to preoperative clin-
ical prediction of postoperative motor response (78% ac-
curacy for identifying weak responders after STN-DBS)
(17). By contrast, imaging-based approaches that fall out-
side our eligibility criteria have reported accuracies such
as 62.5% utilizing patient-specific 3D point clouds gener-
ated from preoperative MRI and postoperative CT (34)
and 88% using fMRI (35). These findings are promising,
but should be interpreted cautiously given differences in
outcomes, inputs, and evaluation protocols. Therefore, we
present them here only as context and not as part of the
systematic synthesis (34, 35). Accordingly, to avoid con-
flating fundamentally different ML tasks and data modali-
ties, the remainder of this Discussion focuses on evidence
that aligns with our eligibility criteria and separates symp-
tom classification from postoperative outcome prediction.

Motor response

Strong responsiveness to DBS in PD patients, as indi-
cated by symptom reduction, is associated with better
levodopa responsiveness, lower baseline tremor severity,
and a younger age (36). However, the strength and con-
sistency of these associations remain controversial (36-
39). ML effectively identifies patterns critical for surgical
decision-making and is used to optimize DBS program-
ming and electrode placement (40, 41).

Speech

Patients with PD exhibit a spectrum of voice disorders,
typically including hypophonia, monoloudness, and
monopitch, as well as hypophonic and hypotonic articula-
tion, which together are referred to as hypokinetic dysar-
thria (42, 43). Despite being a well-established therapy for
advanced PD, the influence of STN-DBS on axial symp-
toms, such as vocal impairments, remains poorly defined

7

http://mjiri.ilums.ac.ir
Med J Islam Repub Iran. 2025 (26 Dec); 39:164.



http://dx.doi.org/10.47176/mjiri.39.164
https://mjiri.iums.ac.ir/article-1-9920-en.html

[ Downloaded from mjiri.iums.ac.ir on 2026-01-30 ]

[ DOI: 10.47176/mijiri.39.164 ]

ML for DBS Outcomes in PD

(44-46). Following STN-DBS, the incidence of speech
disturbances has been documented to range from 1% at six
months to as high as 70% by three years of follow-up (36,
45, 47).

Several mechanisms have been proposed to explain the
development of dysarthria in individuals with PD follow-
ing STN-DBS. First, a decrease in the levodopa equivalent
daily dosage (LEDD) may negatively impact speech pro-
duction. Second, antidromic activation of the hyper-direct
pathway may lead to aberrant activation of cortical re-
gions, thereby contributing to phenomena such as stutter-
ing and spastic speech patterns (48, 49). Third, stimulation
may extend to adjacent structures, such as the corticobulb-
ar and corticospinal tracts, further disrupting motor con-
trol of speech (50-52). ML methodologies offer valuable
tools for identifying vocal abnormalities associated with
neurological conditions, including PD (25, 43, 50, 53).

Suppa et al. (25) report that SVM ML can accurately
differentiate the vocal characteristics of patients treated
with STN-DBS from those managed with oral medication,
using post-stimulation voice deterioration as the key dis-
criminative factor.

Verbal fluency

Verbal fluency (VF) relies on executive functions be-
yond verbal skills (52), including working memory (53),
cognitive flexibility, and response inhibition (54). These
functions can be impaired initially in PD (55) and may
also be affected by DBS. Thus, understanding pre-existing
executive function deficits in patients is crucial for pre-
dicting DBS-related changes in VF (28).

Alhourani et al. (28) investigated three types of VF, in-
cluding letter, semantic, and action fluency, employing an
ML approach to assess neuropsychological variables that
predict VF deterioration following DBS. LASSO and
SVR were the most effective predictive methods. Howev-
er, the simple regression model also provided comparable
variance, offering a more straightforward option for clini-
cal predictions. Across all three predictive models, greater
baseline levels of fluency, digit span performance, educa-
tion, and Mini-Mental State Examination scores were
linked to superior fluency outcomes following surgery.

Freezing of gait

Gait disturbance can manifest in the early stages of PD,
with research indicating that subtle alterations may be
detectable during the prodromal phase (26, 56, 57). In
patients with PD, common gait abnormalities include di-
minished stride length, reduced walking velocity, absence
of arm swing, and difficulties with multi-step turning (58,
59).

Freezing of gait (FOG) episodes can either be triggered
by specific actions or occur paroxysmally, significantly
elevating the likelihood of falling and negatively impact-
ing patients' quality of life (60, 61). The majority of re-
search on FOG utilizes ML approaches to detect and fore-
cast freezing episodes based on signals captured by wear-
able sensors (62).

Watt et al. (26) studied PD patients undergoing STN-
DBS who exhibited freezing of gait when medication and
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DBS were both discontinued. A random forest model
identifies ten key predictive features, encompassing spa-
tial parameters such as foot strike angle, trunk and lumbar
range of motion, stride length, and toe-off angle, along
with temporal parameters such as gait speed and lateral
step variability. Various ML models accurately classified
patients based on instrumented stand and walk trials, in-
cluding KNN, naive Bayes, random forest, logistic regres-
sion, and SVM.

Cognitive decline

Along with the characteristic motor symptoms, PD often
includes non-motor features such as cognitive impairment
and cognitive decline (63, 64). Mild cognitive impairment
affects approximately 25% of PD patients, with dementia
impacting 20-70% (65, 66). Although DBS primarily tar-
gets motor symptoms, it may adversely affect cognitive
domains, including memory, visual function, and execu-
tive performance (67, 68).

Chang et al. (29) developed a nomogram model to as-
sess postoperative cognitive improvement in 103 PD pa-
tients after one year of STN-DBS, using both univariate
and multivariate logistic regression. The multivariate
analysis revealed four key predictors of cognitive im-
provement: years of education, MoCA scores, MMSE
scores, and UPDRS part III. The resulting model demon-
strated strong predictive power, with a concordance index
(C-index) of 0.985 and a sensitivity of 98% on the receiv-
er operating characteristic curve.

The effectiveness of ML models in predicting clinical
outcomes following DBS shows promising results. Chang
et al. (29) achieved an impressive AUC (area under the
curve) of 0.987 and a C-index of 0.98, demonstrating
strong predictive power. On the other hand, Habets et al.
(17) reported a more modest AUC of 0.79, with a PPV
(positive predictive value) of 0.63 and an NPV (negative
predictive value) of 0.88, indicating that while the models
are still valuable, there is room for improvement in predic-
tion accuracy.

Limitations

This work offers the first detailed assessment of ML ap-
plications for predicting clinical outcomes following DBS
in PD. However, several limitations should be acknowl-
edged. The number of eligible studies was limited, and
most were single-center and retrospective in design. It
should also be noted that many existing ML studies in
DBS focus on imaging-based predictors, which were out-
side the scope of our research question. By restricting in-
clusion to clinical and symptom-based predictors, only
eight studies met the eligibility criteria, further limiting
the generalizability of our conclusions. External validation
was rarely performed, limiting the clinical applicability of
these results.

Studies varied considerably in their choice of specific
symptoms as input parameters, and outcome measures
were inconsistently reported.

Furthermore, methodologies for evaluating preoperative
symptoms varied across studies, making it difficult for
reviewers to compare them. Further research should prior-
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itize large-scale, multicenter prospective studies to identi-
fy the most reliable symptom-based predictors for specific
outcomes and to determine the most effective ML models
for these predictions. Additionally, there is a lack of re-
search comparing the efficacy of ML models in predicting
symptom changes following DBS versus traditional oral
medications. Another limitation is that we did not apply
ML-specific risk-of-bias tools such as PROBAST or
QUADAS-AI, and instead we adapted QUADAS-2 as a
structured framework, which may not capture all sources
of bias unique to prediction modeling studies. This
knowledge gap underscores the need for further investiga-
tions in this field.

Conclusion

The role of ML techniques in predicting clinical out-
comes for PD patients who have undergone DBS has been
increasingly investigated in recent studies. These models
might help clinicians select patients, facilitate consulta-
tions, and design individualized treatment plans. These
results should be considered carefully, as the available
studies are limited by small sample sizes, predominantly
retrospective designs, and substantial methodological het-
erogeneity. Future validation through large, multicenter
prospective investigations is required to confirm the relia-
bility of ML models and to support their safe and practical
integration into routine clinical practice.
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