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↑What is “already known” in this topic: 
Lymphatic metastasis is a pivotal determinant of the 
prognosis and treatment approach in gastric cancer (GC). 
Current diagnostic methods for lymphatic metastasis 
diagnosis offer limited accuracy. Deep learning (DL), as a 
novel technology, presents a promising alternative to 
traditional methods for diagnosing medical images.   
 
→What this article adds: 

This systematic review and meta-analysis comprehensively 
evaluate the diagnostic accuracy of DL models for detecting 
lymphatic metastasis in computed tomography in gastric 
cancer patients. Our findings highlight the significant 
potential of DL models, particularly in internal validation 
settings, but also reveal critical challenges related to poor 
generalizability and substantial between-study heterogeneity 
that currently limit their clinical applicability.  
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Abstract 
    Background: Early detection of lymphatic metastasis (LNM) in gastric cancer (GC) is essential to determine the treatment strategy. 
Conventional methods exhibit limited efficacy, highlighting the need for more reliable approaches. Deep learning (DL) models show 
promise for LNM detection in computed tomography (CT); their performance requires comprehensive evaluation. This systematic 
review and meta-analysis evaluate the diagnostic performance of CT-based DL models for detecting LNM in GC patients.  
   Methods: A systematic review and meta-analysis was conducted according to PRISMA-DTA guidelines. PubMed, Embase, and 
Web of Science were searched up to May 5, 2025. The focus was on studies that used DL models to detect LNM in CT in GC. Using a 
bivariate random effect model, Pooled estimates were calculated, heterogeneity and publication bias were assessed, and clinical utility 
was evaluated via Fagan plots and likelihood ratio matrices. Validation type, input data types, CT phases, segmentation techniques, 
and DL architectures stratified subgroup analyses. The quality was assessed with QUADAS-2.  
   Results: From the 14 included studies, 11 studies with 5296 patients were analyzed. In internal validation, DL feature-based models 
achieved a pooled area under the curve (AUC) of 0.91 (95% CI: 0.88-0.93), sensitivity of 0.86 (95% CI: 0.75-0.92), and specificity of 
0.83 (95% CI: 0.67-0.92). Performance degraded in external validation, with specificity dropping to 0.59 (95% CI: 0.26-0.85).  Models 
that integrated DL features with radiomics features showed similar overall performance but were noted to have a higher confirmatory 
power. In terms of clinical utility, although the models could significantly alter post-test probabilities, they ultimately lacked the 
certainty required to serve as standalone diagnostic tools.  
   Conclusion: CT-based DL models show high diagnostic accuracy but limited generalizability across external datasets, indicating 
overfitting. A key finding of this meta-analysis is that pervasive and asymmetric heterogeneity, particularly in specificity, suggests that 
technical standardization alone is insufficient. Integrating clinical variables reduces heterogeneity; however, prospective, multicenter 
studies are needed to further enhance reproducibility.  
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Introduction 
Gastric cancer (GC) ranks as the fifth most common 

malignancy globally and the third leading cause of cancer-
related death (1). More than 50% of patients with GC pre-
sent with lymph node metastases (LNM) at initial diagno-
sis or surgical resection, which decreases the 5-year sur-
vival rate to below 30% (2). Hochwald et al analyzed data 
from 5-year survivors of GC and concluded that LNM was 
the strongest prognostic factor for postoperative outcome. 
They further showed that the number of positive lymph 
nodes was the most important predictor of survival proba-
bility (3). The detection of LNM in GC is essential in de-
termining the surgical approach for patients and the ad-
ministration of chemotherapy (4). The National Compre-
hensive Cancer Network recommends the use of comput-
ed tomography (CT) to detect LNM, which has a limited 
diagnostic accuracy (50%-70%) (5). Human interpretation 
of medical images has several limitations, including sub-
jectivity, interobserver variability, and fatigue. With the 
increasing volume of medical images and the time con-
straints of radiologists, the probability of missing findings, 
prolonged response times, and lack of quantitative analy-
sis increases. These factors are serious obstacles to the 
development of personalized and evidence-based 
healthcare (6). Currently, computer-aided diagnosis 
(CAD) systems have been developed to enhance the per-
formance of conventional imaging modalities and reduce 
the time required for image interpretation. Only machine 
learning (ML) based radiomics has been suggested to en-
hance the prediction of LNM in GC. Deep learning (DL), 
a novel technique, utilizes convolutional neural networks 
(CNNs) to learn internal patterns and profoundly represent 
medical imaging data. Compared with ML, DL can extract 
high-level contextual patterns and meticulous (7).  In re-
cent years, DL methods, particularly CNNs, have been 
widely used in medical image analysis. These models 
demonstrate high performance in image analysis because 
of their ability to recognize spatial patterns and learn hier-
archically from image features. Other DL models, such as 
recurrent neural networks (RNNs) for sequential data and 
generative adversarial networks (GANs) for generating 
new data based on learned data distribution, have also 
been applied. For evaluating the performance of DL mod-
els in medical image recognition, metrics such as the re-
ceiver operating characteristic (ROC) curve, area under 
the curve (AUC), and confusion matrix are employed. The 
ROC curve indicates the balance between sensitivity and 
specificity of the model, and AUC, as a numerical index, 
summarizes the overall performance of the model (8). 
Despite the increasing utilization of DL in the detection of 
LNM from radiological images, the existing evidence is 
sparse and methodologically heterogeneous. Our search 
strategy revealed a lack of comprehensive reviews that 
rigorously evaluate the diagnostic accuracy of DL algo-
rithms in detecting LNM from CT images in GC. Our aim 
in this systematic review and meta-analysis was to inves-
tigate the diagnostic accuracy of DL algorithms applied to 
CT images for predicting LNM in patients with GC. The 
goal of this study was to fill the gap in the current litera-

ture by conducting an evaluative assessment of the availa-
ble evidence and elucidating the clinical applicability and 
methodological quality of these models.  

 
Methods 
Data Sources 
This review was reported according to the PRISMA-

2020 (Preferred Reporting Items for Systematic Reviews 
and Meta-Analyses-2020) guidelines and its extension for 
PRISMA-DTA (Diagnostic Test Accuracy Studies) (9, 
10). Up to May 5, 2025, a comprehensive search was con-
ducted across 3 major databases: PubMed, Embase, and 
Web of Science. For each database, specific search strate-
gies were performed, which included the following terms: 
("Stomach Neoplasm*" OR "Neoplasm, Stomach" OR 
"Gastric Neoplasm*" OR "Neoplasm, Gastric" OR "Neo-
plasms, Gastric" OR "Neoplasms, Stomach" OR" Cancer 
of Stomach" OR "Stomach Cancer*"OR "Cancer of the 
Stomach" OR "Gastric Cancer*" OR "Cancer, Gastric" 
OR "Cancers, Gastric" OR "Cancers, Stomach" OR "Can-
cer, Stomach" OR "Gastric Cancer, Familial Diffuse") 
AND ("Lymphatic Metastasis" OR "Lymphatic Metasta-
ses" OR "Lymph Node Metastasis" OR "Lymph Node 
Metastases" OR "Metastasis, Lymph Node") AND ("Deep 
Learning" OR "Learning, Deep" OR "Hierarchical Learn-
ing" OR "Learning, Hierarchical" OR "Neural Networks, 
Computer" OR "Machine Learning" OR  "Artificial Intel-
ligence" OR "Convolutional Neural Networks" OR " 
CNN" OR "Transformer Models" OR  "Vision Trans-
former"). The search aimed to ascertain the diagnostic 
accuracy and reliability of DL models in detecting LNM 
utilizing CT images in patients diagnosed with GC. The 
search strategy is detailed in the Appendix.  

 
Study Selection 
The articles were reviewed independently by 2 authors 

(A.M. and A.M.). The titles and abstracts of the articles 
were evaluated, and the articles were included according 
to the eligibility criteria. The full text of the screened arti-
cles was reviewed. All full-length papers were reviewed 
by 2 authors (A.M. and A.M.), and discrepancies were 
resolved by the intermediacy of a corresponding author 
(ST). Reasons for exclusion were meticulously document-
ed.  

 
Including Criteria 
Articles employing DL models, such as CNNs, deep 

convolutional neural networks (D-CNNs), transformers, 
fully connected neural networks (FCNNs), and residual 
networks (ResNets), which focused on predicting LNM in 
GC patients using CT images, were included in this study. 
The reference standard for diagnosing LNM was histo-
pathological assessment after surgery. No restrictions 
were imposed on the date of publication, country of 
origin, type of study design, or language of the article. No 
specific criteria were predefined for including hybrid 
models (DL combined with radiomics features, or clinical 
variables, such as patient demographics or tumor charac-
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teristics) or traditional models (e.g., radiologist assess-
ments or non-DL machine learning methods like logistic 
regression). However, studies reporting such comparator 
models were included post hoc if they met the primary 
inclusion criteria (DL-based LNM detection using CT in 
GC). 

 
Exclusion Criteria 
Studies that focused on non-gastric cancers, predicted 

outcomes other than LNM, or utilized methods other than 
CT scan images as input data type were excluded. Addi-
tionally, studies that only used traditional algorithms or 
did not disclose performance metrics and raw data were 
excluded from this study. Case reports, conference ab-
stracts, review articles, meta-analyses, retracted studies, 
and studies with a sample size of less than 100 people 
were excluded from this review. The exclusion of studies 
with fewer than 100 participants was implemented to re-
duce potential selection bias and enhance the statistical 
power and generalizability of the evaluation. 

 
Data Extraction 
Data were independently extracted by 2 authors (A.M. 

and A.M.). Fourteen included studies were recorded in 
preprepared tables. The index test was defined as any DL 
model applied to CT images for LNM prediction. The 
target condition was the diagnosis of LNM in patients 
with GC. The reference standard was postoperative histo-
pathological assessment of resected lymph nodes. For the 
studies that compared different models of DL, we extract-
ed data regarding the primary models that were identified 
based on criteria defined by the original authors. For each 
study, we extracted the following data: first author, year of 
study, study object, country of origin, type of study, input 
data type (deep learning features [DLF], deep leaning fea-
tures + hand-crafted radiomics features [HCRF], deep 
leaning features + clinical variables, or DLF + HCRF + 
clinical variables), model architecture, segmentation 
method, clinical variables, sample size, validation method, 
and performance metrics. The performance of DL models 
was evaluated using the area under the ROC curve (AUC; 
plots sensitivity on the y-axis against 1 − specificity on the 
x-axis at varying thresholds), as well as sensitivity (true 
positive rate), specificity (true negative rate), accuracy 
(overall correct classification), and the 95% confidence 
interval of the AUC. For studies with complete lymph 
node metastasis (LNM) distributions, true positives (TP), 
true negatives (TN), false positives (FP), and false nega-
tives (FN) were directly calculated; for studies with in-
complete data, these values were estimated where possi-
ble. For studies reporting multiple validation datasets for a 
single model, only the validation dataset with the largest 
sample size was included in the meta-analysis. Ultimately, 
3 studies were excluded from the quantitative synthesis 
due to insufficient data, and 11 studies were included in 
the meta-analysis. 

 
 
Statistical Analyses 
A diagnostic test accuracy (DTA) meta-analysis was 

conducted using a bivariate random-effects model to syn-
thesize the performance of CT-based DL models in pre-
dicting LNM. Analyses were stratified by validation type 
(internal vs. external validation cohorts) and performed 
hierarchically for subgroups based on input data type, CT 
phase, segmentation method, and model architecture, pro-
vided that at least three studies were available for each 
subgroup. 

For subgroups with 3 or more studies, the analysis was 
performed in Stata (Version 17) using the metadta com-
mand and in the R environment (version 4.5.1), utilizing 
the mada package. This model was used to calculate 
pooled estimates of sensitivity, specificity, each with 95% 
CIs, diagnostic odds ratios (DOR), positive likelihood 
ratios (LR+), negative likelihood ratios (LR-), AUC, and 
its 95% CIs. SROC curves, forest plots, and bivariate box 
plots of sensitivity and specificity were generated to visu-
alize pooled results and between-study heterogeneity. 
 Heterogeneity was assessed using the chi-square test and 
the I² statistic, with I² values interpreted to indicate the 
degree of variability across studies. Publication bias was 
evaluated using Egger’s tests, but was not assessed for 
subgroups with fewer than 4 studies, since tests like Eg-
ger’s are underpowered and unreliable in small samples. 
To evaluate further diagnostic performance and clinical 
utility across all groups, additional analyses and visualiza-
tions were conducted. These included the generation of 
Fagan's nomograms and likelihood ratio matrices. Statisti-
cal analysis was performed by 2 authors (A.A. and S.T.). 

  
Subgroup Analyses 
The meta-analysis was conducted in a stepwise, hierar-

chical manner to evaluate the different factors on diagnos-
tic performance systematically. The analyses were struc-
tured as follows: 

 1. Input data types: models were categorized into 3 
groups based on input data (DLF, DLF + HCRF, and DLF 
+ HCRF + clinical variables). Pooled diagnostic perfor-
mance estimates were calculated for internal validation 
cohorts (IVC) and external validation cohorts (EVC) to 
assess baseline model performance across these groups. 

 2. CT phases by input data type: models were further 
stratified by CT phase within the DLF-based model and 
analyzed separately in the internal validation set. While 
studies utilized arterial, venous, portal venous, parenchy-
mal, and unenhanced CT imaging, only arterial and com-
bined portal venous/venous phase models had sufficient 
data for analysis. Due to limited data for the venous phase, 
the portal phase was combined with the venous phase for 
analysis, as both are functionally similar. 

 3. Segmentation techniques by input data type: the 
models were stratified based on their segmentation tech-
nique (manual, semi-automatic, or automatic). A quantita-
tive meta-analysis was performed only for the manual 
segmentation subgroup, as there was an insufficient num-
ber of studies employing semi-automatic or automatic 
methods to permit statistical pooling. Consequently, the 
results for these groups were summarized descriptively. 

 4. DL model architectures by input data type: DL mod-
els were categorized by algorithm type within each input 
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data type and analyzed separately in internal and external 
validation datasets. Only CNN-based models had suffi-
cient studies for meta-analysis, as other architectures (e.g., 
Graph-based models and Vision Transformers) lacked 
adequate data. 

 5. CNN models by segmentation technique, CT phase, 
and input data type: a combined analysis evaluated CNN-
based models within the DLF group, focusing on manual 
segmentation and portal/venous-phase CT imaging in 
IVC. This step integrated key methodological factors to 
assess their collective impact on diagnostic performance. 

 
Quality Assessment 
The quality assessment of the included articles was con-

ducted independently by 2 authors 
(A.M. and A.M.) based on the Quality Assessment of 

Diagnostic Accuracy Studies tool-2 (QUADAS-2) frame-
work (11). Disagreements were resolved through the in-
tervention of the corresponding author (S.T.). 

 
Results 
Screening and Selection of Articles 
A systematic search was conducted according to prede-

termined search strategies. A total of 554 articles were 
identified. After eliminating duplicate articles, 415 articles 
were selected for review based on title and abstract. After 
the initial review, 369 articles were excluded, and 44 arti-
cles were selected for further review. The full text was 
reviewed, and 14 articles were ultimately included in the 
study because they aligned with our objectives and met 
the specified criteria. Among the 14 included studies, 11 
provided sufficient data for quantitative synthesis and 

were included in the meta-analysis, while 3 studies were 
excluded from the meta-analysis due to insufficient diag-
nostic data. None of the retrieved studies had a sample 
size below 100 participants; therefore, no articles were 
excluded based on this criterion. A flow diagram illustrat-
ing the selection process is presented in Figure 1. 

 
Study and Patient Characteristics 
Fourteen studies, each employing DL models to detect 

LNM using CT scan images in patients with GC, were 
included in this review. All included studies were retro-
spective. Seven studies utilized multiple hospital centers 
to collect patients, while the remaining studies were con-
ducted at a single center. All studies employed histopatho-
logical diagnosis (various stages from early to locally ad-
vanced) to diagnose GC, and none of the patients studied 
had received chemotherapy agents, except for 1 study 
conducted by Zheng et al (12). The total cohort comprised 
8148 patients, with individual study sample sizes ranging 
from 170 to 1699. A total of 5296 patients were included 
in the meta-analysis. The gold standard for determining 
LNM status was commonly postoperative pathological 
assessment. Studies generally divided cohorts into train-
ing, internal validation, and external validation sets, with 1 
international validation cohort from Italy in the study by 
Dong et al (13). The studies extracted features from the 
tumor, lymph nodes, or a combination of these structures, 
except the study by Shang et al, which utilized imaging of 
the spleen (14). Most studies aimed to predict the inci-
dence of LNM in patients using DL models, except the 
study by Liu et al, which utilized the capability of DL to 
detect LNM to prevent surgical overtreatment (15). Dong 
et al and Zhao et al also examined the stages of LNM, and 

 
 

Figure 1. PRISMA flow chart illustrating the study selection process 
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the study by Gao et al focused on perigastric lymph node 
metastasis (PGMLNs) (13, 16, 17). Two studies evaluated 
LNM at various lymphatic stations (18, 19). Some includ-
ed studies reported comparator models, alongside DL 
models, including hybrid models integrating DL with ra-
diomics or clinical variables. These comparator models 
were quantitatively analyzed based on input data types 

(e.g., DL features, radiomics, clinical variables) in the 
meta-analysis. Tables 1 and 2 provide a comprehensive 
summary of the characteristics of the included studies and 
their reported performance metrics. 

 
 
 

Table 1. Characteristics of Included Studies  
Study Country Study Type Reference 

Standard 
Prediction 

target 
Feature 
source 

Segmentation 
method 

Clinical 
variables 

integration 

CT imaging 
phase 

Liu (15) China Retrospective 
diagnostic 
accuracy 

study 
 

Surgical 
histopathology 

Discriminating D1 
(pT1 + pN0) vs. D2 

(≥ pT1 + ≥ pN1) 
lymphadenectomy 

candidates. 

Tumor 
& 

lymph nodes 
 

Manual by 2 radiol-
ogists 

Age, sex, 
tumor loca-

tion, 
T-stage 

Arterial, 
parenchymal 

Jin (18)  China Retrospective 
diagnostic 
accuracy 

study 

Surgical 
histopathology 

LNM in 11 lymph 
nodes 

stations 
 

Primary 
tumor & 

surrounding 
areas 

Manual by 2 radiol-
ogists 

tumor location, 
grade of dif-
ferentiation, 

Laure´n histo-
logical type 

Portal 
venous 

Zeng (20) China Retrospective 
diagnostic 
accuracy 

study 

Surgical 
histopathology 

LNM in 
Early gastric cancer 

Tumor 
 

Manual by 2 radiol-
ogists 

age, gender, 
tumor size, 

depth, grade, 
Lauren type, 
ulcer, LVI 

Portal 
venous 

Shang 
(14) 

China Retrospective 
diagnostic 
accuracy 

study 

Surgical 
histopathology 

LNM in GC 
 

Spleen Manual by 2 radiol-
ogists 

Age, sex, 
clinical 

symptoms 

Venous 
phase 

Zhang (4)  
 

China Retrospective 
diagnostic 
accuracy 

study 

Surgical 
histopathology 

LNM in 
LAGC 

Tumor 
 

Manual by 2 radiol-
ogists 

Tumor diame-
ter, clinical T 
stage, and CT-
reported LN 

Venous 
phase 

Zhang (7) China Retrospective 
diagnostic 
accuracy 

study 

Surgical 
histopathology 

LNM with multicen-
ter data & 

MSDA 

Tumor & 
lymph nodes 

 

Automatic with 
3D IFPN & 
FDT module 

Age & sex as 
auxiliary tasks 

Unenhanced, 
enhanced 

Zhu (19) China Retrospective 
diagnostic 
accuracy 

study 

Surgical 
histopathology 

LNM in 12 lymph 
nodes 

stations & overall 
metastasis 

Tumor 
 

Automatic with 
3D Attention- 

UNet 

No Arterial 
phase 

Gao (17) China Retrospective 
diagnostic 
accuracy 

study 

Surgical 
histopathology 

Peri-gastric metastat-
ic lymph nodes 

 

Metastatic 
lymph nodes 

 

Manual by 3 radiol-
ogists 

No Arterial, 
venous, 

equilibrium 

Dong (13) China, 
Italy 

Retrospective 
diagnostic 
accuracy 

study 

Surgical 
histopathology 

Pathologic N stage, 
discriminating non-

N0 vs N0 LNM 

Tumor Manual by 1 radiol-
ogist 

 

Clinical N 
stage 

Unenhanced 
and 

arterial, 
venous 

(PC, VC1, 
VC2) 

arterial, 
venous 

(VC3, IVC) 
Guan (21) China Retrospective 

diagnostic 
accuracy 

study 

Surgical 
histopathology 

LNM in GC Tumor 
 

Semiautomatic with 
CT thresholding, 

manual adjustment 
by 

2 radiologists 

CT-reported 
LN status 

Arterial 
phase 

Zheng 
(12) 

China Retrospective 
diagnostic 
accuracy 

study 

Surgical 
histopathology 

LNM in LAGC 
post-NAC 

Tumor Semiautomatic with 
AILEN, manual 
adjustment by 2 

radiologists 

Tumor 
location and 

cN stage 

Portal 
venous 

Zhao (16) China Retrospective 
diagnostic 
accuracy 

study 

Surgical 
histopathology 

N0, N1, N2, N3a, 
N3b 

Stages 
Binary LNM status 

Tumor 
& 

WSI pathol-
ogy 

Manual by 
2 radiologists 

No Portal 
venous 

Li (22) 
 

China Retrospective 
diagnostic 
accuracy 

study 

Surgical 
histopathology 

LNM in GC Tumor Manual by radiolo-
gists 

Tumor thick-
ness, nICVP, 
and CT- CT-
reported LN 

Arterial, 
venous 

(dual energy 
CT) 

Wan (23)  China Retrospective 
diagnostic 
accuracy 

study 

Surgical 
histopathology 

LNM in non-
enlarged lymph 

nodes 

Lymph nodes 
 
 

Manual by 2 radiol-
ogists 

NO Arterial 
phase 

GC: Gastric cancer CT: Computed tomography LN: Lymph node LNM: Lymphatic metastasis LVI: Lymph vascular invasion LAGS: Locally advanced gastric cancer 
IFPN: Improved Feature Pyramid Network   PC: Primary cohort VC: Validation cohort IVC: International validation cohort NAC: Neoadjuvant chemotherapy      VIT: 
Vision transformer DCNN: Deep convolutional neural network SAE: Sparse autoencoder WSI: Whole slide image 
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Meta-analysis of Diagnostic Performance Based on In-
put Data Types 

The meta-analysis was conducted in a stepwise, hierar-
chical manner. For each subgroup, a bivariate random-
effects model was used. The baseline pooled diagnostic 
performance estimates for DL models based on input data 
types across internal and external validation datasets. For-
est plots in Figure 2 provide a visual summary of the 
pooled diagnostic performance. They also display individ-
ual study estimates with corresponding confidence inter-
vals, highlighting both the consistency and variability of 
findings across studies. 

 

DLF-Based Models 
In the IVC, DLF-based models demonstrated excellent 

overall diagnostic accuracy with a pooled AUC of 0.91 
(95% CI: 0.88-0.93). The pooled sensitivity was 0.86 
(95% CI: 0.75-0.92), and the pooled specificity was 0.83 
(95% CI: 0.67-0.92). The models demonstrated strong 
discriminatory ability, with a DOR of 4.43 (95% CI: 2.63-
6.86), a LR+ of 4.23, and an LR- of 0.24. We found sub-
stantial heterogeneity for both sensitivity (I² = 64.6%) and 
specificity (I² = 78.8%), and the test for publication bias 
was not significant (P = 0.701). 

In the EVC, the models showed good diagnostic accura-
cy with a pooled AUC of 0.83 (95% CI: 0.79-0.86). The 
pooled sensitivity remained high at 0.87 (95% CI: 0.63-

Table 2. Summary of the DL Models' Performance Metrics for LNM Prediction in GC Using Preoperative CT Imaging. Combined 
models (integrating DL with radiomics/clinical variables) are included when DL was used for feature extraction 
Authors Sample size Deep learning 

model  
Input data type validation sets Discrimination statis-

tics of the main 
model 

TP TN FP FN 

Dong (13) 
2020 
  

730 
(PC: 225, 
VC1: 178, 
VC2: 145, 
VC3: 131, 
IVC: 51) 

  

DenseNet-201 DLF+HCRF+ 
Clinical varia-

bles730 

EVC1  C-index: 0.777 
(95%CI: 

0.735-0.819) 
 
 

114 21 36 9 

EVC2 C-index: 0.817 
(95%CI: 

0.775-0.860) 
 

111 12 16 6 

EVC3 C-index: 0.787 
95%CI:0.756-0.887 

 

60 26 34 11 

International C-index: 0.822 
(95%CI: 

0.737-0.838) 
 
 
 

- - - - 

Zheng (12) 
2024 

1205 
(TC: 361, 
IVC: 155, 
EVC1:319, 
EVC2:370)  

Transformer-based 
DLN 

DLF EVC2 AUC: 0.788 
(95% CI: 

0.735–0.835) 
Sen:0.785 
Spe: 0.597 

ACC: 0.715 
 

157 71 48 43 

Transformer-based 
DLN 

DLF + Clinical EVC2 AUC: 0.77 
Sen:0.769 
Spe: 0.618 

ACC: 0.714 
(95% CI : 

0.713–0.818) 

180 84 52 54 

Guan (21) 
2023 

347 
(TC: 242, 
IVC: 105) 

ResNet50 DLF IVC AUC: 0.9803 
Sen:0.9839 
Spe: 0.9767 
ACC: 0.981 

61 42 1 1 

DLF+ HCRF IVC AUC: 0.9687 
Sen:0.9839 
Spe: 0.9535 

ACC: 0.9714 

61 41 2 1 

Zhang (4) 
2022 

523 
(TC: 367, 
IVC: 156) 

ResNet50 
 

DLF IVC AUC: 0.796 
(95% CI: 

0.715-0.865) 
Sen: 0.802 
spe: 0.647 

ACC: 0.752 
 

87 30 17 22 

Li (22) 
2020  

204 
(TC: 136, 
IVC: 68)  

DCNN DLF + HCRF + 
Clinical varia-

bles  

IVC AUC: 0.82 
(95% CI: 
0.72-0.92) 
Sen: 0.74 
spe: 0.8 

ACC: 0.76  

22 30 8 8 

DLF: Deep learning feature HCRF: Handcrafted radiomics feature DCNN: Deep Convolutional neural network PC: Primary cohort VC: Validation cohort IVC: Interna-
tional validation cohort TC: Training cohort EVC: External validation AUC: Area under the curve Sen: Sensitivity Spe: Specificity ACC: Accuracy CI: Confidence 
interval  TP: True positive TN: True negative FP: False positive FN: False negative  FRCNN: Faster region-based convolutional neural networks 3D IFPN: 3D improved 
feature pyramidal network  UDC-GCN: Unsupervised domain selective graph convolutional network  LMM-net: Lymph Node metastasis multitask learning network 
FRCNN: Faster region-based convolutional neural networks VGG19: Visual Geometry Group 19-layer network 
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0.96), while the pooled specificity was considerably lower 
at 0.59 (95% CI: 0.26-0.85). The DOR was 4.53, with an 
LR+ of 2.39 and an LR- of 0.26. Significant heterogeneity 
was observed for both sensitivity (I² = 71.٦%) and speci-
ficity (I² = 87%), but Egger’s test for publication bias was 
nonsignificant (P = 0.221). 

 
Combined Deep Learning and Handcrafted Radiomics 

Features 
This group was assessed only in the IVC.  Models com-

bining DLF with HCRF achieved strong performance. The 
pooled AUC was 0.91 (95% CI: 0.88-0.93), with a pooled 
sensitivity of 0.85 (95% CI: 0.66-0.94) and a pooled spec-
ificity of 0.83 (95% CI: 0.6-0.94). These models showed a 
strong ability to confirm and rule out LNM, with a DOR 
of 5.55, an LR+ of 5.32, and an LR- of 0.25. We noted 
significant heterogeneity for both sensitivity (I² = 76.8%) 
and specificity (I² = 76.3%), and publication bias was un-
likely (P = 0.882). 

 

Table 2. Continued 
Authors Sample size Deep learning 

model 
Input data 

type 
Validation 

sets 
Discrimination statistics of 

the main model 
TP TN FP FN 

Shang 
(14) 
2025 

284 
(TC: 202, 
IVC: 51, 
EVC:31) 

MobileNetV2, 
NASNetMobile, 
EfficientNetB, 
ResNet50, Res-

Net101, ResNet152, 
VGG16, and 

VGG19. 

DLF + 
HCRF  

EVC AUC:0.8152 
(95% CI:0.60–0.96) 

Sen:0.9565 
Spe:0.2500 

ACC:0.7742  

22 2 6 1 

DLF + 
HCRF  

EVC AUC:0.853 
(95% CI: 

0.652–0.988) 
Sen:1 

Spe:0.2500 
ACC:0.8065  

23 2 6 0 

Zhao (16) 
2023 
 

252 
(TC:202, IVC:50) 

 

ResNet-50, Vision 
Transformer 

 

DLF IVC AUC:0.978 
(95% CI: 0.912–1.000) 

Sen:1 
Spe:0.9 

ACC:0.98  

13 33 4 0 

Gao (17) 
2019 

602 
(Initial Group: 313, 

Precision Group: 189, 
Validation: 100) 

FR-CNN DLF IVC AUC: 0.9541  - - - - 

Jin(18) 
2021 

1699 
(TC+IVC: 1172, 

EVC:527) 

ResNet-18 DLF EVC Median AUC: 0.876 
(95%CI: 0.856–0.893) 
Sen: 0.743 (median) 
Spe:0.936 (median)  

- - - - 

Liu (15) 
2019 

557 
(TC:371, 
IVC:186) 

Autoencoder DLF IVC AUC: 0.946 
Sen: 0.896 
Spe: 0.87 

95% CI for AUC: 0.925-
0.978 

- - - - 

Zeng (20) 
2022 

554 
(TC: 388, 
IVC:167, 
EVC:79)  

Resnet152  DLF EVC AUC: 0.915 
(95%CI: 0.850–0.981) 

Sen: 0.882 
Spe: 0.806 

ACC: 0.861  

15 50 12 2 

DLF + 
HCRF 

EVC AUC: 0.581 
(95%CI: 0.415–0.746) 

Sens: 0.706 
Spec: 0.541 
ACC: 0.759 

12 34 28 5 

DLF + 
HCRF + 
Clinical 
variables 

EVC AUC: 0.915 
(95%CI: 0.850–0.981) 

Sen: 0.882 
Spe: 0.806 

ACC: 0.861 

15 50 12 2 

Zhang (7) 
2022 

211 
Multi-center domain  

UDS-GCN DLF EVC AUC:0.6121 
Sen: 

0.9818 
Spe:0.1053 

ACC:0.7568 

54 2 17 1 

Zhu (19) 
2025 

293 
(TC:205, 
IVC: 58, 
EVC:30) 

LMML-net DLF EVC AUC: 0.805 
(95%CI: 0.658-1) 

Sen:0.81 
Spe:0.769 

ACC:0.794  

22 23 5 8 

Wan (23) 
2021 

170 
(TC:119, 
IVC:51) 

 

Sparse autoencoder DLF IVC AUC: 0.735 
(95% CI :0.59-0.٨۵) 

Sen:0.8485 
Spe:0.5789 

 

28 1 8 5 

DLF + 
HCRF 

IVC AUC: 0.872 
(95% CI: 0.751-0.949 ) 

Sen:0.7879 
Spe:0.9474 

26 18 1 7 
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Combined DL, handcrafted Radiomics Features, and 
Clinical Variables 

Adding clinical variables to the hybrid models yielded 
different outcomes between internal and external valida-
tion. In IVC, the pooled AUC was 0.75 (95% CI: 0.68-

0.82); sensitivity and specificity were 0.77 (95% CI: 0.67-
0.84) and 0.85 (95% CI: 0.76-0.90), respectively. The 
DOR was 3.59, with an LR+ of 4.77 and an LR- of 0.29. 
We found no significant heterogeneity for either sensitivi-
ty (I² = 2%) or specificity (I² = 8%). In contrast, EVC 

  

  

 
Figure 2. Forest Plots summarizing the pooled diagnostic performance estimates for the three primary subgroups, categorized by input data type in 
internal and external validations 
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showed a higher pooled AUC of 0.88 (95% CI: 0.86-0.9) 
and higher sensitivity at 0.93 (95% CI: 0.85-0.97), but 
specificity dropped to 0.49 (95% CI: 0.2-0.79). The DOR 
was 5.34 (95% CI: 2.86-8.95), with an LR+ of 2.07 (95% 
CI: 1.18-4.38) and LR- of 0.2 (95% CI: 0.11-0.35). Heter-
ogeneity was low for sensitivity (I² = 25%) but high for 
specificity (I² = 79.8%). Notably, all studies in this sub-
group utilized CNN-based architectures; therefore, a sepa-
rate CNN subgroup analysis was not necessary. 

 
Subgroup Analyses 
To investigate sources of heterogeneity and assess the 

impact of imaging protocols, DL architecture, and seg-
mentation method, subgroup analyses were conducted. 

 
CT Phase in DLF-Based Models 
Models trained on arterial phase images had high diag-

nostic performance in internal validation, with a pooled 
AUC of 0.91 (95% CI: 0.84-0.97). Sensitivity reached 
0.90 (95% CI: 0.67-0.98) and specificity was 0.86 (95% 
CI: 0.54-0.97). The DOR was 12.1 (LR+, 9.77; LR-, 
0.19). Substantial heterogeneity was present for both sen-
sitivity (I² = 71.6%) and specificity (I² = 72.٧%). Models 
using combined portal and venous phase images achieved 
more balanced diagnostic performance in internal valida-
tion with a pooled AUC of 0.85 (95% CI: 0.82-0.88), a 
sensitivity of 0.80 (95% CI: 0.72-0.87), and a specificity 
of 0.79 (95% CI: 0.64-0.89). The DOR was 3.56, with 
LR+ of 3.66 and LR- of 0.29. Heterogeneity was low for 
sensitivity (I² = 21.8%) but substantial for specificity (I² = 
78%). We observed no publication bias. (P = 0.247). 

 
Segmentation Method 
Models employing manual segmentation performed 

well with a pooled AUC of 0.84 (95% CI: 0.81-0.87). 
Sensitivity and specificity were 0.82 (95% CI: 0.76-0.87) 
and 0.78 (95% CI: 0.62-0.89), respectively. The DOR was 
3.87, supported by an LR+ of 3.66 and an LR- of 0.27. 
Heterogeneity was negligible for sensitivity (I² = 3%) but 
was high for specificity (I² = 72.6%). 

 
DL Architecture 
The analysis of DL architectures was limited to the in-

ternal validation cohort. Within this group, we evaluated 
CNN-based models in both DLF-only and hybrid (DLF + 
HCRF) frameworks.  

In the DLF-only models, CNN architectures demon-
strated excellent performance with a pooled AUC of 0.94 
(95% CI: 0.92-0.960. Sensitivity was 0.89 and specificity 
was 0.88, yielding a DOR of 6.15 and robust likelihood 
ratios. Heterogeneity was substantial for both metrics (I² = 
66.7% and 74%, respectively). In hybrid models, the 
CNN-based subgroup yielded a higher DOR of 10.4, but 
this estimate was imprecise due to a wide confidence in-
terval (0.91-45.7). This group also had a lower AUC of 
0.87 and remarkably high heterogeneity for both sensitivi-
ty (I² = 79.3%) and specificity (I² = 82.8%).  

 
 

Combined Subgroup Analysis 
To assess the combined effect of key methodological 

choices, a subgroup analysis was performed on models 
that used a CNN architecture, manual segmentation, and 
portal/venous phase images. These models, evaluated in 
IVC, demonstrated good diagnostic performance with a 
pooled AUC of 0.79 (95% CI: 0.78-0.8), a sensitivity of 
0.82 (95% CI: 0.74-0.89), and a specificity of 0.83 (95% 
CI: 0.67–0.92). The DOR was 4.06. Heterogeneity was 
low for sensitivity (I² = 6.4%) but substantial for specifici-
ty (I² = 73.4%).  

The complete meta-analytic results, including all sub-
group findings, are summarized in Tables 3 and 4. Figure 
3 illustrates the SROC curves for the 3 main groups, ana-
lyzed and categorized based on input data type. Figure 4 
presents a bivariate box plot that compares sensitivity and 
specificity across model subgroups. 

 
Clinical Utility Assessment  
To comprehensively evaluate the clinical utility and di-

agnostic impact of the different modeling approaches, 
Fagan nomograms and likelihood ratio matrix plots were 
generated for the main subgroups (based on input data 
type). The Fagan nomograms illustrate how a test result 
modifies the post-test probability of having LNM from a 
baseline pre-test probability. The LR matrices categorize 
the overall diagnostic power of each model based on its 
positive and negative LR, placing them into quadrants 
representing their value for LNM confirmation, exclusion, 
or both.  

In the IVC, the DLF-based model demonstrated consid-
erable clinical utility. The Fagan nomogram (Figure 5A) 
shows that a positive test increases the post-test probabil-
ity of LNM to a convincing 82.2%. Despite this signifi-
cant probability shift, the LR matrix (Figure 6A) places 
the summary estimate in the lower-right quadrant (RLQ), 
indicating that while the model is useful, it does not meet 
the stringent criteria for use as a definitive test. In 
the EVC, the model's utility diminished. The Fagan plot 
(Figure 5B) shows a more modest increase in probability 
to 72.9% after a positive test. The LR matrix (Figure 4B) 
also demonstrates this weaker confirmatory power, as the 
summary estimate stays consistently in the RLQ, which 
visually confirms the performance drop in external data. 

The hybrid model combining DL and HCRF showed the 
strongest performance in confirming the disease. The Fa-
gan nomogram (Figure 5C) reveals that a positive test 
(LR+ of 5.32) elevates the post-test probability to 85.1%, 
the highest among all groups. However, the LR matrix 
plot (Figure 6C) shows that even with this strong perfor-
mance, the summary estimate still resides in the RLQ, 
failing to cross the threshold for a high-value confirmatory 
test, although 1 study did achieve this. Models integrating 
DL features with radiomics and clinical variables in IVC 
demonstrated a notable ability to rule out LNM. The Fa-
gan plot (Figure 5E) shows that a negative test (LR = 
0.29) reduces the probability to 17.8%. Even so, the LR 
matrix (Figure 6D) kept this estimate in the RLQ. In 
the EVC, this model's utility for confirming the disease 
was the weakest. The Fagan plot (Figure 5D) shows that a 
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positive test (LR+ of 2.07) only raises the post-test proba-
bility to 71.4%. This is visually reinforced by its position 
in the LR matrix (Figure 6E), which had the lowest LR+ 
of all subgroups. 

 
Quality Assessment 
The assessment of the methodological quality of the in-

cluded studies revealed multiple sources of bias and con-
cerns regarding applicability. In the patient selection do-
main, the retrospective design of all studies was rated as 
having "unclear" regarding bias. The index test domain 
presented significant issues; the common failure to pre-
specify a diagnostic threshold was rated as a high risk of 

bias, while the lack of reported radiologist blinding during 
segmentation also raised "unclear." Similarly, in the refer-
ence standard domain, the lack of reported pathologist 
blinding was a source of "unclear" for interpretation bias. 

Regarding applicability, the predominance of single-
center studies was a primary concern, raising doubts about 
the generalizability of the findings to diverse clinical set-
tings. Details of the study assessment are provided in Ta-
ble 5. 

 
Discussion 
A systematic review and meta-analysis assessed the po-

tential of CT-based DL models in predicting LNM in GC 

Table 3. Pooled Effect Size Based on Input Data Type for Deep Learning Models in Detecting Lymph Node Metastasis 
Input 
data type 

N. 
studies 

Validation AUC 
(95% CI) 

Sen 
(95% CI) 

Spe 
(95% CI) 

DOR 
(95% CI) 

LR+ 
(95% CI) 

LR- 
(95% CI) 

I2 P-
Value 

Publication 
bias 

DLF-
based 
models 

7 IVC 0.91 
(0.88-0.93) 

0.86 
(0.75-
0.92) 

0.83 
(0.67-
0.92) 

4.43 
(2.63-
6.86) 

4.23 
(2.19-
7.74) 

0.24 
(0.146-
0.38) 

Sen:64.62 
Spec:78.83 

 

<0.001 0.701 

DLF-
based 
models 

4 EVC 0.83 
(0.79-0.86) 

0.87 
(0.63-
0.96) 

0.59 
(0.26-
0.85) 

4.53 
(1.91 -
9.85) 

 

2.38 
(1.22- 
5.36) 

0.26 
(0.1 -0.52) 

Sen:71.65 
Spe:87.07 

<0.001 0.221 

DLF + 
HCRF-
based 
models 

4 IVC 0.91 
(0.88-0.93) 

0.85 
(0.66-
0.94) 

0.83 
(0.6-0.94) 

۵࿿۵۵ 
(١࿿۵۶-
١۴࿿١) 

5.32 
(1.47-
14.5) 

0.25 
(0.07-
0.64) 

Sen:76.8 
Spe:76.34 

<0.001 0.882 

DLF + 
HCRF + 
Clinical 
variables-
based 
models 

3 IVC 0.75 
(0.68-0.82) 

0.77 
(0.67-
0.84) 

0.85 
(0.76 -
0.90) 

3.59 
(2.43 -
5.24) 

 

4.77 
(2.88 -
7.61) 

 

0.29 
(0.19 -
0.41) 

 

Sen: 2.05 
Spe:8.05 

0.998 - 

DLF + 
HCRF + 
Clinical 
variables-
based 
models 

3 EVC 0.88 
(0.86-0.90) 

0.93 
(0.85-
0.97) 

0.49 
(0.2 -
0.79) 

5.34 
(2.86 -
8.95) 

 

2.07 
(1.18 -
4.38) 

 

0.20 
(0.11 -
0.35) 

 

Sen:25.09 
Spe:79.81 

<0.001 - 

DLF: Deep learning feature HCRF: Handcrafted radiomics feature Validation cohort IVC: International validation cohort EVC: External validation AUC: Area under 
the curve Sen: Sensitivity Spe: Specificity CI: Confidence interval DOR: Diagnostic odds ratio LR+: positive likelihood ratio LR-: Negative likelihood ratios 

 
Table 4. Subgroup analyses for deep learning models in detecting lymph node metastasis 
Subgroup N. 

studies 
Validation AUC 

(95% 
CI) 

SEN 
(95% 
CI) 

Spe 
(95% CI) 

DOR 
(95% 
CI) 

LR+ 
(95% 
CI) 

LR- 
(95% 
CI) 

I2 P-
Value 

Publication 
bias 

CT phases 
DLF-based models in 
the arterial Phase 
 

3 IVC 0.91 
(0.84 -
0.97) 

0.90 
(0.67-
0.98) 

0.86 
(0.54 - 
0.97) 

12.1 
(1.29 -

48) 

9.77 
(1.21 -
40.8) 

0.19 
(0.02 -
0.78) 

Sen:71.63 
Spe:72.75 

 
<0.001 

- 

DLF-based models in 
the combined (portal 
venous/venous) Phase 

4 IVC 
 
 

0.85 
(0.82-
0.88) 

0.80 
(0.72-
0.87) 

0.79 
(0.64-
0.89) 

3.56 
(2.37 -
4.97) 

 

3.66 
(1.91 -
6.79) 

 

0.29 
(0.2 -
0.42) 

 

Sen:21.81 
Spe:78.01 

0.006 0.247 

Segmentation method 
DLF-based models 
with manual Segmenta-
tion 

4 IVC 0.84 
(0.81-
0.87) 

0.82 
(0.76-
0.87) 

0.78 
(0.62-
0.89) 

3.87 
(2.64 -
5.33) 

 

3.66 
(1.89 -
6.95) 

 

0.27 
(0.19 -
0.38) 

 

Sen:3.09 
Spe:72.6 

0.026 0.595 

DL architectures 
CNN-based algorithms 
in DLF-based models 

 
5 

 
IVC 

 
 

 
0.94 

(0.92-
0.96) 

 
0.89 

(0.74-
0.96) 

 
0.88 

(0.73-
0.95) 

 
6.15 

(2.68 -
12.4) 

 

 
6.08 
(2.6 -
12.5) 

 

 
0.19 

(0.08- 
0.37) 

 

 
Sen:66.66 
Spe:74.01 

 
<0.001 

 
0.742 

CNN-based algorithms 
in DLF + HCRF-based 
models 

3 IVC 0.87 
(0.72-
0.96) 

0.88 
(0.56 -
0.98) 

0.8 
(0.51-
0.94) 

10.4 
(0.91 -
45.7) 

5.74 
(0.92-
19.2) 

0.26 
(0.02 -
0.1.1) 

Sen:79.25 
Spe:82.79 

<0.001 -_ 

Combined analysis 
CNN-based with man-
ual Segmentation in 
combined (ve-
nous/Portal) Phases in 
DLF-based models 

3 IVC 0.79 
(0.78-
0.80) 

0.82 
(0.74-
0.89) 

0.83 
(0.67-
0.92) 

4.06 
(2.71 -
5.74) 

4.69 
(3.44-
6.39) 

 
4.61 

(2.09 -
9.57) 

 

Sen:6.42 
Spe:73.43 

0.088 __-_ 

DLF: Deep learning feature HCRF: Handcrafted radiomics feature IVC: Internal validation EVC: External validation AUC: Area under the curve Sen: Sensitivity Spe: 
Specificity CI: Confidence interval DOR: Diagnostic odds ratio LR+: positive likelihood ratio LR-: Negative likelihood ratios 
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patients. LNM is a critical prognostic factor influencing 
treatment planning and patient survival. Early detection of 
LNM is vital for designing appropriate treatments for pa-
tients. Our study’s findings demonstrated the transforma-
tive potential of DL models in enhancing diagnostic accu-
racy for LNM prediction from CT images. 

DL is a subfield of ML characterized by its capability to 
learn features from existing data autonomously. Recent 
research has demonstrated that DL-based methodologies, 
particularly CNN models, exhibit enhanced accuracy in 
diagnosing and identifying various types of cancer (24). 
DNNs are elegant algorithms that possess substantial 

  

  

 
Figure 3. Illustrates the SROC curves for three key models based on input data type, highlighting differences in diagnostic performance between 
internal (IVC) and external validation (EVC) sets 
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computational power to analyze large images, including 
hematoxylin and eosin-stained whole-slide images ob-
tained from biopsies or surgically resected tissues. DNNs 
extend their capabilities beyond pathology images, effec-
tively examining other medical imaging modalities such 
as CT scans, magnetic resonance imaging (MRI), and 
mammograms (25). A 2017 study employed artificial in-
telligence (AI) for skin lesion classification, utilizing 
129,450 clinical images. The researchers compared the 
performance of DCNNs with 21 board-certified dermatol-
ogists. The findings revealed that artificial intelligence 
achieved comparable accuracy in classifying skin cancer 
to dermatologists (26). Zhou et al used MRI images from 
patients with hepatocellular cancer for grading, and they 
reached an AUC of 0.83 (27). The study by Jin et al. of-
fers valuable insights into the diagnostic potential of DL 
models. They developed a ResNet-18-based DL model to 
predict LNM across 11 nodal stations in GC patients. The 
model demonstrated excellent performance in the external 
validation set, achieving a median AUC of 0.876 (range, 
0.856-0.893), which substantially outperformed conven-
tional clinicopathological models (median AUC, 0.652). 
Importantly, Grad-CAM visualizations revealed that the 
DL model focused on specific intra- and peritumoral re-
gions during prediction, indicating that it could capture 
subtle imaging patterns even without direct lymph node 
segmentation. This supports the potential of DL approach-
es to identify metastasis by recognizing complex spatial 
features (18). 

Due to the heterogeneity of the biological characteristics 
of GC, different treatment methods are used based on the 
histology, morphology, and depth of tumor invasion. 

Since the selection of the appropriate treatment method is 
mainly limited to preoperative imaging findings, there is a 
significant increase in overdiagnosis of the disease in the 
early stages and underdiagnosis in advanced stages (15). 
Hasegawa et al evaluated 315 patients with GC to deter-
mine the accuracy of multidetector row CT images in the 
prediction of serosal invasion and nodal metastases. The 
findings demonstrated an overall diagnostic accuracy of 
75.9% for N staging (28). Liu et al developed ML models 
to analyze preoperative CT images and clinical data of 
patients with locally advanced gastric cancer to predict D1 
versus D2 lymphadenectomy. The AE model reduced 
overtreatment by 14% to 20%. Given the high prevalence 
of advanced GC in Eastern countries, relatively few pa-
tients with early-stage disease were included in this study. 
Also, radiomic features were not analyzed in this study 
(15). Rathore et al used multiparametric MRI, incorporat-
ing pathology images, to develop RadPath signatures in 
patients with glioblastoma (29). Radiomics, a novel tech-
nology, has significant potential in the field of oncology. 
Classifying images using DL and integrating it with radi-
omics is a challenging approach; hence, limited studies 
have employed this method in the field of GC.  

Our systematic review and meta-analysis of 14 studies 
demonstrate that CT-based DL models have a significant 
potential for detecting LNM in GC. The most critical find-
ing of this study is the contrast between high internal ac-
curacy and compromised external performance. While DL 
models achieve excellent diagnostic accuracy on internal 
validation sets, with DLF-based models reaching a pooled 
AUC of 0.91, their performance degrades when applied to 
external datasets. This was most evident in the sharp de-

 
 
Figure 4. Bivariate box plot. Compare the analysis of sensitivity and specificity across model subgroups. This box plot illustrates the distribution of 
pooled sensitivity (sen) and specificity (spe) for key subgroups. The plot highlights the performance gap between internal and external validation; 
while sensitivity remains high in both settings, specificity drops significantly and shows greater variability in external validation cohorts compared 
to internal validation cohorts. 
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cline in specificity (from 0.83 to 0.59), indicating a high 
rate of false positives in new data. This generalizability 
gap suggests that models are overfitting to site-specific 
characteristics of the training data (e.g., scanner protocols, 
patient populations) rather than learning robust, universal 
biological markers of metastasis. Our results indicate that 
combining multiple data modalities does not necessarily 
improve all performance metrics uniformly. In internal 
validation, while hybrid models (DLF + HCRF) and DLF-
based models achieved an identical pooled AUC of 0.91, 
the hybrid approach demonstrated a notable improvement 

in confirmatory power. Specifically, the favorable likeli-
hood ratio increased from 4.23 in DLF-based models to 
5.32 in the hybrid models, suggesting that the inclusion of 
handcrafted radiomic features can enhance the model's 
ability to correctly confirm metastasis. Therefore, rather 
than offering limited added value, radiomics appears to 
specifically increase the model's confirmatory utility, even 
if it does not alter the overall discrimination. 

The inclusion of clinical variables presented a mixed 
outcome: while sensitivity improved (0.93) in external 
validation, specificity declined sharply (0.49 vs. 0.85 in 

  
A      B 

  
C      D 

 
E 
 
Figure 5. Fagan nomograms, illustrating the change in post-test probability of LNM based on positive and negative test results. (A) DLF-based model 
in internal validation cohort (IVC), (B) DLF-based model in external validation cohort (EVC), (C) DLF + HCRF model in IVC, (D) DLF + HCRF + 
Clinical Variables model in EVC, (E) DLF + HCRF + Clinical Variables model in IVC 
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internal), likely due to overfitting, rather than the effect of 
clinical data itself. This underscores the necessity for ex-
ternal validation, particularly for multimodal models. 

One of the notable findings was the exceptional perfor-
mance of the study by Guan et al., which, as a single 

study, met the criteria for a high-value diagnostic test 
(LR+ > 10 and LR- < 0.1). While the original paper's in-
ternal analysis might have reported nuanced enhance-
ments from combining features, within our meta-analysis, 
this study stands out as a successful example of the poten-

   
A      B 

   
C      D 

 
E 
 
Figure 6. Likelihood ratio matrix plots for the three main subgroups, categorized by input data type. The plots display the positive likelihood ratio 
(LR+) against the negative likelihood ratio (LR−), with quadrants indicating diagnostic utility for confirming and/or excluding LNM. 
A: DLF-based models in IVC 
B: DLF-based models in EVC 
C: DLF + HCRF-based models in IVC 
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tial of hybrid models. Its high performance suggests that 
achieving excellent diagnostic accuracy is possible with 
careful feature selection and imaging protocols. Therefore, 
rather than being viewed as an example of non-
enhancement, this study should be considered a bench-
mark for future research (21). Due to the insufficient 
number of studies, a quantitative meta-analysis could not 
be performed for the subgroup of models that directly 
combined DLF with clinical variables in our study. 

Our subgroup analyses highlight the critical impact of 
specific technical decisions on model performance. For 
instance, CNN-based models emerged as top performers 
in terms of raw AUC (0.94), but this finding was tempered 
by significant heterogeneity for both sensitivity (I² = 
66.7%) and specificity (I² = 74%). Similarly, the arterial-
phase subgroup demonstrated the highest diagnostic odds 
ratio (12.1), suggesting it may be the optimal imaging 
protocol. However, the considerable heterogeneity within 
this group for both sensitivity (I² = 71.6%) and specificity 
(I² = 72.8%) limits the reliability of this conclusion. It is 
noticeable that models using arterial phase CT showed a 
higher DOR than those using the combined portal/venous 
phase (12.1 vs. 3.56). In the study by Liu et al., an autoen-
coder was used to develop a decision-making model in the 
arterial and parenchymal phases. This model achieved the 
highest AUC (0.946) among the examined models (18). In 
a study conducted by Gao et al, they utilized triphasic 
CTs; the researchers initially trained a DL model on 1,371 
CT scans labeled by radiologists for LNM (AUC, 0.89). 
Because the outcomes of the initial phase were unsatisfac-
tory, based on the pathology reports of 250 patients, 3 
senior radiologists relabeled 1,004 CT scans with excep-
tional accuracy. The improved model achieved an AUC of 
0.9541, highlighting the significant impact of the quality 
and precision of training data on a DL model's ultimate 
performance (17). 

Our meta-analysis revealed substantial heterogeneity in 
the diagnostic performance of DL models for detecting 
LNM, with I² values for sensitivity and specificity exceed-
ing 64% in both DLF-only and DLF combined with 
HCRF models, likely reflecting methodological diversity 
across studies. Notably, incorporating clinical variables in 

the internal validation cohort markedly reduced heteroge-
neity for both sensitivity (I² = 2.1%) and specificity (I² = 
8.1%), suggesting that clinical information enhances mod-
el standardization and reproducibility for real-world use. 
However, heterogeneity varied unevenly across perfor-
mance metrics. In subgroups with technical standardiza-
tion, such as manual segmentation or portal/venous-phase 
CT, sensitivity was relatively consistent (e.g., I² = 6.4% 
for CNN-based models with manual segmentation on por-
tal/venous-phase scans). Still, specificity remained highly 
variable (I² = 73.4%). This persistent variability in speci-
ficity, even in the most homogeneous subgroup, likely 
stems from clinical factors, such as diverse patient popula-
tions or imaging appearances of benign lymph nodes, in-
dicating that technical standardization alone cannot fully 
address performance inconsistencies. The Fagan nomo-
grams and LR matrices offer complementary insights into 
the clinical utility of the evaluated models. While the Fa-
gan plots indicate that all models can meaningfully alter 
the post-test probability of LNM, suggesting potential 
support in clinical decision-making, the LR matrices ex-
pose a key limitation: none of the strategies consistently 
achieve the diagnostic certainty needed to serve as 
standalone tools for ruling in or ruling out disease. Nota-
bly, both visualization methods consistently reflect a 
marked decline in diagnostic strength during external val-
idation, emphasizing the ongoing challenge of generaliza-
bility. 

The included studies used different segmentation tech-
niques to delineate tumor regions on CT images. Most 
studies relied on manual or semi-automatic segmentation 
methods. Many studies have used 2-dimensional (2D) 
features from single slices rather than 3D volumetric fea-
tures, which may not accurately represent the entire tumor 
and could impact feature accuracy and model robustness. 
In a semi-automated segmentation technique, a combina-
tion of automatic and manual algorithms was applied (e.g., 
Guan et al and Zheng et al). Zhu et al utilized a 3D Atten-
tion-UNet with Focal Tversky Loss for semi-automatic 
tumor segmentation. Initially, radiologists manually anno-
tated tumors with 3D Slicer, and the model refined these 
annotations to create a probability map (Ptumor). A key 

Table 5. Quality Assessment of Included Studies Based on QUADAS2 
 
 
Study 

Risk of bias Application concerns 
Patient 

selection 
Index 
 test 

Reference 
 standard 

Flow and timing Patient 
selection 

Index 
 test 

Reference 
 standard 

Dong (13) Unclear High Unclear Low Low Low Low 
Zheng (12)  Unclear Low Low Low Low low Low 
Zhang (7)  Unclear Low Unclear Low High Low Low 
Gao (17) Unclear High Unclear Low High Low Low 
Guan (21)  Unclear High Low Low High Low Low 
Shang (14)  Unclear High Unclear Low Low Low Low 
Wan (23)   Unclear High Unclear Low High Low Low 
Li (22) Unclear Unclear Unclear Low High Low Low 
Liu (15)  Unclear Unclear Unclear Low High Low Low 
Jin (18)  Unclear Low Unclear Low Low Low Low 
Zeng (20)  Unclear High Unclear Low Low Low Low 
Zhu (19)  Unclear High Unclear Low Low Low Low 
Zhao (16)  Unclear High Unclear Low High Low Low 
Zhang (4) Unclear High Unclear low High low low 
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aspect of this method is the use of attention gates, which 
focus on areas relevant to the tumor while minimizing the 
effect of unrelated background information. This approach 
helps resolve challenges related to class imbalance and 
irregular tumor shapes. The dice scores achieved were 
0.582 for training and 0.547 for testing, indicating moder-
ate accuracy in segmentation (19). Remarkably, the study 
by Shang et al. employed fully automated U-mamba seg-
mentation for the spleen to decrease time and inter-
observer variability, which was a unique approach (14). 
These examples underscore that technical decisions at 
each stage of the modeling pipeline can significantly in-
fluence overall model performance. 

 In retrospective studies, where pathological assess-
ments are predetermined based on archived records, initial 
review of CT images by radiologists is a crucial step in 
training DL models. This process relies heavily on preex-
isting pathological results as the gold standard. However, 
the lack of blinding reporting between the labeling process 
and subsequent model predictions, as observed in some of 
the reviewed studies, raises potential concerns about the 
risk of bias. Also, a critical methodological issue identi-
fied in the assessed studies was the common failure to pre-
specify a diagnostic threshold. This omission introduces a 
significant risk of bias, as it raises the possibility that the 
cutoff points were selected post-hoc, after the data had 
been analyzed.  

The assessment of clinical utility through Fagan nomo-
grams and likelihood ratio matrices provides context for 
these statistical findings. Our results show that these mod-
els are clinically useful for risk stratification; for example, 
a positive test from the best-performing hybrid model 
could increase the post-test probability of LNM to over 
85%. However, the LR matrices clearly illustrate that 
none of the current modeling strategies, on average, meet 
the stringent criteria (LR+ > 10 or LR- < 0.1) required for 
a standalone test to confirm or rule out the disease defini-
tively. 

This review has several limitations. First, the small 
number of studies in many subgroups limited the statisti-
cal power of the meta-analysis. Additionally, subgroup 
analyses for models based on DLF + clinical variables, 
automatic and semi-automatic segmentation methods, 
unenhanced versus enhanced CT phases, and for other DL 
architectures could not be performed due to insufficient 
data, precluding quantitative comparison with manually 
segmented or arterial/venous imaging protocols and CNN-
based models. Second, while our subgroup analyses ex-
plored sources of the substantial and complex heterogenei-
ty found throughout our results, its persistence—
remarkably the asymmetric variability in specificity—
underscores the challenge of clinical translation. A few 
studies included EVC, and single-center designs reduce 
applicability to diverse populations. Third, all included 
studies were retrospective, and a potential lack of report-
ing on blinding during data annotation introduces a risk of 
bias. Our exclusive focus on CT-based DL models also 
excluded potentially informative multimodal approaches 
(e.g., MRI, pathology, or clinical-genomic integration), 
which narrows the scope of our conclusions. Finally, the 

predominance of studies originating from Eastern coun-
tries may limit their global applicability.  

It is recommended that future studies be conducted with 
standardized protocols for validation and prospectively in 
a multi-center manner. For future research to yield more 
robust and reliable findings, studies must establish and 
register a clear, pre-specified diagnostic threshold before 
data collection and analysis. Retrospective findings must 
be validated in prospective clinical trials with large sam-
ple sizes to confirm their real-world utility and impact on 
patient outcomes. Different phases of CT scans should be 
systematically compared, and imaging protocols should be 
optimized, with reporting guidelines to reduce heterogene-
ity. Automated techniques should be used for segmenta-
tion to eliminate observer bias. Feature selection methods 
should be investigated to reduce redundancy, and optimal 
features should be used. Genomic, proteomic, imaging, 
pathological, and clinical data should be integrated to de-
sign robust predictive models. Furthermore, model inter-
pretability should be enhanced using tools such as Grad-
CAM and SHAP values. Concurrently, given our finding 
that specificity heterogeneity persists even after technical 
standardization, future research should aim to identify and 
model the clinical or biological factors that contribute to 
this variability, as this appears to be a critical barrier to 
improving model generalizability.  

 
Conclusion 
CT-based DL models show strong potential for predict-

ing LNM in GC, with high diagnostic accuracy in internal 
validation. Yet, a notable drop in specificity during exter-
nal validation highlights the risk of overfitting and limited 
generalizability. Model complexity had mixed effects: 
radiomic features added confirmatory strength, while clin-
ical variables reduced heterogeneity but introduced varia-
ble trade-offs. Promising techniques, such as CNN archi-
tectures and arterial-phase imaging, require cautious inter-
pretation due to persistent heterogeneity in the data. Ex-
tensive, prospective studies involving diverse populations, 
independent validation, and standardized protocols are 
necessary to confirm the clinical utility of this approach. 
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Appendix. Literature searching strategies in PubMed, Web of science and Embase (The search conducted until 5 May 2025) 
NO. Search query for Web of Science  Result 

#1 TS=("Stomach Neoplasms" OR "Neoplasm, Stomach" OR "Stomach Neoplasm" OR "Gastric Neoplasm*" OR "Neo-
plasm, Gastric" OR "Neoplasms, Gastric" OR "Neoplasms, Stomach" OR "Cancer of Stomach" OR "Stomach Cancer*" 
OR "Cancer of the Stomach" OR "Gastric Cancer*" OR "Cancer, Gastric" OR "Cancers, Gastric" OR "Cancers, Stom-
ach" OR "Cancer, Stomach" OR "Gastric Cancer, Familial Diffuse") 

126094 

#2 TS=("Lymphatic Metastasis" OR "Lymphatic Metastases" OR "Lymph Node Metastasis" OR "Lymph Node Metasta-
ses" OR "Metastasis, Lymph Node")  

75266 

#3 TS=("Deep Learning" OR "Learning, Deep" OR "Hierarchical Learning" OR "Learning, Hierarchical" OR "Neural 
Networks, Computer" OR "Machine Learning" OR "Artificial Intelligence" OR "Convolutional Neural Networks" OR 
"CNN" OR "Transformer Models" OR "Vision Transformer") 

1012764 

#4 #1 AND #2 AND #3 83 
 
 
NO. Search query for PubMed  Result 

#1 Stomach Neoplasms[mh] OR Neoplasm, Stomach[tiab] OR Stomach Neoplasm[tiab] OR Gastric Neoplasm*[tiab] OR Neo-
plasm, Gastric[tiab] OR Neoplasms, Gastric[tiab] OR Neoplasms, Stomach[tiab] OR Cancer of Stomach[tiab] OR Stomach 
Cancer*[tiab] OR Cancer of the Stomach[tiab] OR Gastric Cancer*[tiab] OR Cancer, Gastric[tiab] OR Cancers, Gastric[tiab] 
OR Cancers, Stomach[tiab] OR Cancer, Stomach[tiab] OR Gastric Cancer, Familial Diffuse[tiab] 

149502 

#2 Lymphatic Metastasis[mh] OR Lymphatic Metastases[tiab] OR Lymph Node Metastasis[tiab] OR Lymph Node Metasta-
ses[tiab] OR Metastasis, Lymph Node[tiab]  

136303 

#3 Deep Learning[mh] OR Learning, Deep[tiab] OR Hierarchical Learning[tiab] OR Learning, Hierarchical[tiab] OR "Neural 
Networks, Computer"[mh] OR "Machine Learning"[mh] OR "Artificial Intelligence"[mh] OR "Convolutional Neural Net-
works"[tiab] OR "CNN"[tiab] OR "Transformer Models"[tiab] OR "Vision Transformer"[tiab] 

249615 

#4 #1 AND #2 AND #3 79 

 
 
NO. Search query for Embase Result 
#1 Stomach Neoplasms OR Neoplasm, Stomach OR Stomach Neoplasm OR Gastric Neoplasm* OR Neoplasm, Gastric OR 

Neoplasms, Gastric OR Neoplasms, Stomach OR Cancer of Stomach OR Stomach Cancer* OR Cancer of the Stomach OR 
Gastric Cancer* OR Cancer, Gastric OR Cancers, Gastric OR Cancers, Stomach OR Cancer, Stomach OR Gastric Cancer, 
Familial Diffuse. 

317,006 

#2 Lymphatic Metastasis OR Lymphatic Metastases OR Lymph Node Metastasis OR Lymph Node Metastases OR Metastasis, 
Lymph Node                                    

288241 

#3 Deep Learning OR Learning, Deep OR Hierarchical Learning OR Learning, Hierarchical OR Neural Networks, Computer OR 
Machine Learning OR Artificial Intelligence OR Convolutional Neural Networks OR CNN OR Transformer Models OR 
Vision Transformer                                                                          

728374 

#4   #1 AND #2 AND #3   392 
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