Farhad Lotfi, Mojtaba Jafari, Mohsen Rezaei Hemami, Mahmoud Salesi, Shekoufeh Nikfar, Hossein Behnam Morshedi, Javad Kojuri, Khosro Keshavarz,
Volume 34, Issue 1 (2-2020)
Abstract
Background: The aim of this study was to investigate the effectiveness of bone marrow-derived cells (BMC) technology in patients with heart failure and compare it with alternative therapies, including drug therapy, cardiac resynchronization therapy pacemaker (CRT-P), cardiac resynchronization therapy defibrillator (CRT-D).
Methods: A systematic review study was conducted to identify all clinical studies published by 2017. Using keywords such as “Heart Failure, BMC, Drug Therapy, CRT-D, CRT-P” and combinations of the mentioned words, we searched electronic databases, including Scopus, Cochrane Library, and PubMed. The quality of the selected studies was assessed using the Cochrane Collaboration's tool and the Newcastle-Ottawa. The primary and secondary end-points were left ventricular ejection fraction (LVEF) (%), failure cases (Number), left ventricular end-systolic volume (LVES) (ml), and left ventricular end-diastolic volume (LVED) (ml). Random-effects network meta-analyses were used to conduct a systematic comparison. Statistical analysis was done using STATA.
Results: This network meta-analysis covered a total of 57 final studies and 6694 patients. The Comparative effectiveness of BMC versus CRT-D, Drug, and CRT-P methods indicated the statistically significant superiority of BMC over CRT-P (6.607, 95% CI: 2.92, 10.29) in LVEF index and overall CRT-P (-13.946, 95% CI: -18.59, -9.29) and drug therapy (-4.176, 95% CI: -8.02, -.33) in LVES index. In addition, in terms of LVED index, the BMC had statistically significant differences with CRT-P (-10.187, 95% CI: -18.85, -1.52). BMC was also dominant to all methods in failure cases as a final outcome and the difference was statistically significant i.e. BMC vs CRT-D: 0.529 (0.45, 0.62) and BMC vs Drug: 0.516 (0.44, 0.60).
In none of the outcomes, the other methods were statistically more efficacious than BMC. The BMC method was superior or similar to the other methods in all outcomes.
Conclusion: The results of this study showed that the BMC method, in general, and especially in terms of failure cases index, had a higher level of clinical effectiveness. However, due to the lack of data asymmetry, insufficient data and head-to-head studies, BMC in this meta-analysis might be considered as an alternative to existing treatments for heart failure.
Khosro Keshavarz, Mojtaba Jafari, Farhad Lotfi, Peivand Bastani, Mahmood Salesi, Farshid Gheisari, Mohsen Rezaei Hemami,
Volume 34, Issue 1 (2-2020)
Abstract
Background: Positron Emission Mammography (PEM) is an imaging technique which is increasing focuses on imaging the chest instead of imaging the whole body. The aim of this study was to conduct a systematic review of the clinical efficacy and cost-effectiveness of PEM technology, as compared with PET, as a diagnostic method used for breast cancer patients.
Methods: The present study was a Health Technology Assessment (HTA), which was conducted via a systematic review of clinical efficacy and cost-effectiveness of the methods based on domestic evidence. To evaluate the efficacy of the PEM diagnostic method, as compared with PET, we used efficacy indices, including Sensitivity, Specificity, Accuracy, PPV, and NPV. The required data were collected through a meta-analysis of studies published in electronic databases from 1990 to 2016. In addition, direct costs in both methods were estimated and finally, a cost-effectiveness analysis was performed using the results of the study. Also, a one-way sensitivity analysis was performed to examine the effects of parameters’ uncertainty in the model. In this study, we used STATA software to integrate the results of studies with similar parameters.
Results: A total of 722 cases (N) were obtained from the five final studies. The results of the meta-analysis performed on the collected data showed that the two methods were identical in terms of the Specificity and PPV parameters. However, as to Sensitivity, NPV, and Accuracy parameters, the PEM method was superior to the PET for diagnosis of primary breast cancer. The total cost of using PEM and PET was $1737385.7 and $1940903.5, respectively, and the cost of a one-time scan (cost per unit) using PEM and PET devices was $86.82 and $157.63, respectively. As compared with the PET method, the use of the PEM diagnostic method for diagnosis of breast cancer was cost-effective in terms of all the five studied parameters (it was definitely cost-effective for four parameters and was also considered as cost-effective for another index, since ICER was below the threshold).
Conclusion: The results showed that the use of PEM technology for the diagnosis of primary breast cancer is more cost-effective than PET technology; thus, due to the wide range of PET technology in different fields, it is recommended that this method should be used in other areas of priority.